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Executive Summary 

The ATIS/ATMS Regional ITS Demonstration project report consists of three main 

parts: (1) an extensive, state-of-the-art literature review of data fusion technologies, 

(2) a detailed description of a current data amalgamation (fusion) project based at 
:sll 

the University of Washington, and (3) the presentation of a new quantitative data 

fusion algorithm to estimate speed from volume and occupancy measurements. Data 

fusion technologies are categorized according to the level of detailed inference and 

user recommendations they provide from various data inputs. Five general methods 

of data fusion are discussed, with examples of specific fusion techniques; applications 

for those techniques are cited, and special attention is given to their implementation 

in ITS projects. In addition to a broad literature review, we describe two local data 

fusion projects that use highway sensor data to (1) aggregate loop data for reuse by 

traveler information systems and (2) generate reliable traffic speed estimates that can 

be used by regional commuters to guide their transit decisions. 

The architecture of the data fusion system based at the University of Washington 

consists of four major components. These components are partitioned among various 

- computers that are located at different sites and connected by a local area network 

and Tl lines. Within these computers exist dedicated servers that handle specific 

processes. The TMSUW server collects loop data from the RTDB main memory and 

then broadcasts them over a local area network. The loop rebroadcast server collects 

the broadcast data and retransmits them over a Tl line. The loop repeater server, 

located at the University of Washington, receives each data packet sent over the Tl 

link. This arrangement reduces the load on the loop rebroadcast server and provides 

for future expansion. The loop server, the final component of the system, provides 

highway data for end users. This data includes occupancy and volume information 

for each loop and station, as well as details on the average speed and length for each 

speed trap. 
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This project has accomplished three significant tasks. First, a state-of-the-art lit­

erature review has provided an organizational framework for categorizing the various 

data fusion projects that have been conducted to date. A popular typology was dis­

cussed that situates data fusion technologies in one of three levels, depending on the 

degree to which sensor data are correlated to provide users with meaningful transit 

recommendations. The trade-offs that accompany higher-level data fusion efforts - in 

terms of computing power and memory requirements - were noted. The advantages 

of multiple-sensor data fusion projects in terms of cost, accuracy and reliability were 

also discussed, and contrasts were drawn with the traditional deployment of highly 

accurate, single sensors. Specific techniques of data fusion were described and their 

possible application to ITS projects was explored. In fact, this report is one of the 

first to consider how data fusion technology might be productively applied to the 

needs of transportation management. A second major component of this report is 

the description of a local data fusion application. This project employs data fusion 

techniques to correlate input from multiple highway sensors and generate reliable traf­

fic predictions. The resulting information can be displayed for use by commuters as 

they choose from among various transit options. The architecture of this data fusion 

system is described in detail. The third component of the project was to create a 

statistically based algorithm to estimate speed from volume and occupancy measure­

ments. The algorithm presented explicitly accounts for the statistics of the problem 

and provides a robustness test for the speed estimate. 
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1. INTRODUCTION 

This report on the ATIS/ATMS Regional ITS Demonstration project consists of three 

main parts: (1) an extensive state-of-the-art literature review of data fusion technolo­

gies, (2) a detailed description of a current data amalgamation (fusion) project based 

at the University of Washington, and (3) the presentation of a new quantitative data 

fusion algorithm to estimate speed from volume and occupancy measurements. Data 

fusion technologies are categorized according to the level of detailed inference and 

user recommendations they provide from various data inputs. Five general methods 

of data fusion are discussed and examples are given of specific fusion techniques. In 

addition, applications for those techniques are cited, and special attention is given to 

their implementation in ITS projects. We also describe two local data fusion projects 

that (1) aggregate loop data for reuse by traveler information systems and (2) gen­

erate reliable traffic speed estimates that regional commuters can use to guide their 

transit decisions. 

1 
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2. BACKGROUND AND 
STATE-OF-THE-ART REVIEW 

As its name implies, multi-sensor data fusion is a technique by which data from 

several sensors are combined through a centralized data processor to provide com­

prehensive and accurate information. Although the provision of a single data stream 

from multiple inputs is advantageous, the powerful potential of this technology stems 

from its ability to track changing conditions and anticipate impacts more consistently 

than could traditionally be done with a single data source - even a highly reliable 

one. Thus, multi-s~nsor data fusion makes it is possible to create a synergistic pro­

cess in which the consolidation of individual data creates a combined resource with a 

productive value greater than the sum of its parts (Hackett & Shah, 1990). 

Data fusion technology is still in its infancy, having undergone rapid growth that 

started in the late 1980s and has continued to the present. The U.S. Department 

of Defense conducted much of the early research on this technology and explored 

its usefulness in military surveillance and land-based battle management systems. 

The application of data fusion technology to commercial endeavors (e.g., robotics 

and general image processing) and non-military government projects (e.g., weather 

surveillance and NASA missions) is also growing rapidly. In its current state, the 

technology can combine sensor data ·of many types, including radar, infrared, sonar, 

and visual information. Data fusion has been given much attention in the engineering 

literature, yet relatively few articles discuss its potential usefulness for transportation 

management or Intelligent Transportation Systems (ITS). ITS refers to modern trans­

portation systems that integrate advanced surveillance, communications, computer, 

and other technologies for purposes of improving the efficiency and safety of highways 

(Shuman, 1993). 

Current multi-sensor data fusion projects are testing the ability ~f the technology 
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to deliver information that provides the following (Sarma & Raju, 1991; Lin et al., 

1991 ): 

• Increased confidence: more than one sensor can confirm the same target 

• Reduced ambiguity: joint information from multiple sensors reduces the set of 

hypotheses about the target 

• Improved detection: integration of multiple measurements of the same target 

improves signal-to-noise ratio, which increases the assurance of detection 

• Increased robustness: one sensor can contribute information where others are 

unavailable, inoperative, or ineffective 

• Enhanced spatial and temporal coverage: one sensor can work when or where 

another sensor cannot 

• Decreased costs: a suite of "average" sensors can achieve the same level of 

performance as a single, highly-reliable sensor and at a significantly lower cost. 

Several data fusion algorithms have been developed and applied, individually and 

in combination, providing users with various levels of informational detail. In re­

viewing this emerging technology, the U.S. Defense Department's Joint Directorate 

of Laboratories Data Fusion Subpanel has developed three basic categories - or levels 

- of data fusion (Linn & Hall, 1991). These fusion levels are differentiated according 

to the amount of information they provide. The most basic level involves the fusion 

of multi-sensor data to determine the position, velocity, and identity of a target. At 

this level, however, only raw, uncorrelated data are provided to the user. In compar­

ison, level two data fusion provides a higher level of inference and delivers additional 

interpretive meaning suggested from the raw data. Level three data fusion is designed 

to make assessments and provide recommendations to the user, much as occurs in 

knowledge-based expert systems (KBES). Thus, each jump between data fusion levels 

represents a corresponding leap in technological complexity to produce increasingly 

valuable informational detail. 

4 
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According to Linn and Hall's 1991 taxonomy of data fusion algorithms, five gen­

eral, goal-oriented, data fusion methods are in use today: data association, positional 

estimation, identity fusion, pattern recognition, and artificial intelligence (Linn & 

Hall, 1991 ). Within these five general categories, ten discrete data fusion techniques 

can be identified (see Table 2.1). 

Fusion Level General Method Specific Technique 
Level one Data association Figure of merit (FOM) 

Gating techniques 
Positional estimation Kalman filters 

Level two Identity fusion Bayesian decision theory 
Dempster-Schafer evidential reasoning 
(DSER) 

Pattern recognition Adaptive neural networks 
Cluster methods 

Level three Artificial intelligence Expert systems 
Blackboard architecture 
Fuzzy logic 

T a bl e 2 1 . .  C ommon d ta fa us1on · t hec · mques 

The purpose of" this state-of-the-art review is to provide a synopsis of the most 

predominant of these techniques. In the discussion that follows, these techniques are 

grouped by fusion level, differentiating them according to the nature of the infor­

mation they provide. After each technique is introduced, its major applications are 

presented. Particular attention is given to cases that illustrate ITS or transportation 

applications. 

Figure 1 provides a frequency distribution of the general methods used in ap­

proximately 50 U.S. military data fusion projects examined in Linn and Hall's 1991 

review ( see Table 2.1). Artificial intelligence techniques are the most widely applied 

general method of performing data fusion. Only three of these defense projects used 

pattern recognition methods ( e.g., neural networks). This low number may indicate 

an underestimation of the importance of neural networks in the field of data fusion, 

given their voluminous coverage in broader engineering literature. 

An annotated list of other state-of-the-art reviews is provided m Appendix B. 

Though various reviews of data fusion have been conducted, this document is the 
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Figure 2.1: Frequency distribution of the general meth­
ods used in U.S. military data fusion projects (Linn and 
Hall, 1991). 
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General Methods 

first to specifically examine data fusion technology with an eye to its application in 

Intelligent Transportation Systems. 

2.1. LEVEL ONE FUSION 

2.1.1. Data Association 

The first general method of combining multi-sensor data, known as data. association, 

correlates one set of sensor observations with another set of observations. As a. result 

of this process, data association is able to produce a set of "tracks" for a target object. 

A track is an estimate of a target's kinematics, including such factors as its position, 

velocity, and rate of acceleration (Hughes,. 1989). Thus, data association represents 

the initial step necessary for localizing a target; this can later be enhanced with the 

identification of other characteristics associated with the target. 

6 



A fundamental challenge with data association is the task of deciding which obser­

vations should be combined into track estimates. Several methods have been devised 

to decrease the error probability of track estimation by eliminating data outliers, 

which are data observations that lie outside a specified confidence interval, typically 

0.95 or 0.99. Two common techniques used to eliminate outliers are establishing a 

figure of merit (FOM) and gating. Both of these techniques work by selecting only 

those data observations that lie within a predetermined error threshold. One way 

to measure the distance between an established track for a target and a single ob­

servation in question is the Mahalanobis distance. This is the measured distance 

normalized by measurement and track error variances (Collins & Uhlmann, 1992). 

In an in-depth state-of-the-art review of data association techniques employed in 

the aerospace industry, Blackman and Broida (1990) claimed that many of the issues 

encountered in aerospace applications are not unique to that field but are evident 

in other engineering domains, as well - including ITS. For more information on the 

leading techniques of data association developed in the past decade, see also Bar­

Shalom and Fortmann (1987). 

2.1.2. Positional Estimation: Kalman Filters 

First reported in the ASME's Journal of Basic Engineering by R.E. Kalman (1960), 

this positional estimation algorithm has been widely used for a variety of optimiza­

tion tasks. Transportation systems employing Kalman filtering use discrete-time al­

gorithms to remove noise from sensor sign_als in order to better determine the present 

and future positions of a target (Bozic, 1979). 

Kalman filtering produces fused data that estimate the smoothed values of posi­

tion, velocity, and acceleration at a series of points in a trajectory (Sarma & Raju, 

1991 ). Although no set of sensors can pinpoint a target with complete accuracy, the 

tolerance of each sensor's positional fix accuracy can be known and assigned. So 

Kalman filtering can be used to define a region of space within which an object is 

located (Hughes, 1989). The more narrow these spatial limits are kept, the better 

the estimation algorithm can perform. 

Bayesian decision models that use a priori knowledge of a target's kinematic 

7 
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motion characteristics are also integral to the Kalman filter algorithm. For example, 

Kim (1992) estimated target attributes by using Bayes' rule while making position 

estimates with Kalman filters. After each sensor observation is taken at a specified 

time interval, these observations are weighted according to their known accuracy level 

(Schlachta & Studenny, 1990). These weights are often inversely proportional to the 

variance of each sensor's response. Other approaches for dealing with dissimilarity in 

sensor tracking error are discussed by Haimovich et al. (1993). 

Figure 2.2: Calculations involved in a Kalman filter (Ba­
howick, 1990). 

Kalman Filter Operation 
current 

fe.'lp<>nses 
current 
estimates 

r(k + 

H(k) 'i(k/k-1) 

K(k) 

Kalman 
gain 

---...-----.... 

A 
X(k/k-1) 

Delay 
----.--- Pfl<Vious 

A esumate 
X(k-1/k-l) 

°2(k) 

anticipated observation anticipiited state transition 
responses matrix state estimate matrix 

State Estimate Update: 
A A K * x(k/k) = x(k/k-1) + 
current anticipated + Kalman • current re.~onse minus 
estimate estimate gain anticipated response 

Like the Bayesian method, the Kalman filter algorithm can demand complex com­

putations. Figure 2.2 shows the many calculations involved with a Kalman filter 

operation. This process is in many ways analogous to computing the half-life of a 

radioactive element (Bahowick, 1990). 

Easthope et al. (1989) attempted to deal with the computational complexities of 

real-time Kalman filter design by introducing an object-oriented approach. Object­

oriented programming can save much time in system development by compiling a 

library of modular, adaptive mini-programs. 

8 



2.1.3. Kalman Filters Applications 

Little rc~scarc.h ha.s been reported in tlw United St.ates on I.he specific application of 

Kalman filtering techniques to Intelligent Transportation Systems or to transportation 

systems in general. However, Kessaci et al. (1989) have used Kalman filters in Europe 

to estimate traffic-turning movement ratios based on data from magnetic loop sensors. 

Their work was performed on a project called PRODYN, a real-time, traffic-control 

algorithm tested in Toulouse, France. Kessaci et al. found that their Kalman filter 

estimation technique was both efficient and fast enough to be fully integrated into 

the PRODYN architecture. 

In Germany, Behringer et al. (1992) tested Kalman filters to construct four­

dimcnsional, position estimates for an autonomous driving system deployed on public 

roads in actual traffic situations. The computer architecture for the PROMETHEUS 

system, as it was called, consisted of modular clusters of 23 transputers that per­

formed image analysis, feature extraction, object modeling, sensor data integration, 

and vehicle control. Researchers concluded that PROMETHEUS was able to success­

fully interpret roadway characteristics - even under real-time traffic conditions. 

Other transportation-related research has been reported by Schlachta and Stu­

denny (1990), who used Kalman filters to improve the accuracy and reliability of 

an Omega-GPS (Global Positioning System) aircraft navigation system deployed in 

Canada. A global positioning system employs a network of Earth-orbiting satellites to 

calculate a subject's position and then transmit that information to the subject's GPS 

receiver; this technology has been widely applied in ITS projects. Though researchers 

acknowledge, that Kalman filters are the current state-of-the-art in data fusion, they 

also recognize the difficulty of predefining a Kalman filter that is appropriate to a 

particular navigation problem. 

Kalman filtering has been applied mainly in the field of robotics. Wen & Durrant­

Whyte (1992) described their efforts to design a filter that is mounted on a robot 

arm and then used to locate a specific object. They recommended a model-based 

Kalman filter with previously-built-in constraints to recursively predict, match, and 

update a target's location. These constraints can be generated from a CAD-model 
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database. Moutarlier & Chatila (1989) developed a formal approach to incremental, 

three-dimensional map making and robot location by using a laser range finder and 

a stereo system. Their system sets up a unique reference frame wherein the location 

of all object frames and the robot are already known. The filter is able to cope with 

all kinds of correlations, including spatio-temporal ones. The system also accounts 

for anticipated filter biases. 

In the field of general image processing, Durrant-Whyte et al. (1990) illustrated 

how a Kalman filter algorithm can be implemented to allow several cameras to track, 

in real time, a small object moving through a room. Their research focused on 

developing a thoroughly decentralized computer architecture, in hopes of eliminating 

the problems inherent in a centralized one. The major problem with a centralized 

communications system - one through which all messages between sensors must pass 

- is the communications and computational bottlenecks that inevitably develop. In 

addition, when one sensor breaks down in a centralized architecture the others are 

impacted as well. Durrant-Whyte et al. developed a fully decentralized architecture 

based upon a network of sensor nodes in which each node has its own processor. 

Other researchers working on decentralized Kalman filtering as applied to military 

aircraft navigation claim that the positional error for a centralized architecture can be 

close to three times greater than that of a decentralized system (Broatch & Henley, 

1991). The top diagram of Figure 2.3 depicts a centralized architecture, and the 

bottom diagram depicts a decentralized one. 

2.2. LEVEL TWO FUSION 

2.2.1. Bayesian Decision Theory 

According to the Joint Directorate of Laboratories Data Fusion Subpanel, level two 

data fusion represents an advance beyond the creation of raw sensor data, as occurs 

at the first level, and supports the synth.esis of more meaningful information for 

guiding human decision-making. Bayesian decision theory is one of the most common 

techniques employed in level two data fusion. It is used to generate a probabilistic 

model of uncertain system states by consolidating and interpreting overlapping data 

10 



Figure 2.3: Centralized versus decentralized architecture 
(Belcastro et al., 1991) 
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provided by several sensors. It also determines conditional probabilities from a priori 

evidence; these revised probabilities are called "a posteriori probabilities." 

The use of multiple sensors in data fusion projects can produce conflicting data 

which, in turn, can cause decision problems. Application of the Bayesian theorem 

in such cases has proven successful in overcoming this challenge. It models the un­

known system state by using probabilistic functions to determine an appropriate set 

of actions (Cameron & Wu, 1991). 

Without a probabilistic means of fusing data, sensors are only able to relay a 

binary "yes-no" response calculated on the basis of their owq isolated, internal classi­

fication processes. This "yes-no" response can be termed a "hard decision" because it 

11 



reports no level of uncertainty back to the global data fusion center, only a definitive 

answer. The trouble with this method, according to Fennelly et· al. (1992), is that 

a great deal of useful information is lost when sensors generate only "yes-no" inputs 

from collected data ( see Figure 2.4) . 

--

Figure 2.4: Decision support and classification model 
(Fennelly et al., 1992). 

Sample Uncertain Uncertain 

~ 
Nonlethal Nonlethal Nonlethal 

In addressing this problem, probabilistic data fusion generates what. might be 

termed "soft decisions." This process provides a greater measure of confidence by· 

quantifying the uncertainty behind each sensor decision (Buede & Waltz, 1989). The 

composite evidence is then compared with some predetermined decision threshold 

level to arrive at a more accurate identification of unknown targets. Figure 2.5 shows 

the increased confidence level made possible by soft-decision sensors. 

Several studies bear out the effectiveness of using the Bayesian theorem for identi­

fying unknown targets. One study, Fennelly et al. (1992), reported a confidence level 

of 95 percent for an X-ray explosives-detection system that used _five or six different 

soft sensors. These sensors, taken individually, averaged only about a 50 percent ef­

fective confidence level. The false detection rate for this system was 0.01 percent, and 

the cost of the system was much less than the price for a single-sensor approach with 

a corresponding 95 percent confid~nce level. The study also pointed out that a sys­

tem of soft-decision sensors in a decentralized architecture is less likely to completely 

break down. 
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Figure 2.5: Increased confidence level made possible by 
soft-decision sensors (Buede & Waltz, 1989). 
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2.2.2. Bayesian Decision Theory Applications 

Over the years, a substantial body of literature on Bayesian theory applications has 

been written. It is not too surprising, then, that a large number of data fusion 

projects use Bayesian uncertainty modeling as a data fusion strategy. Application of 

the Bayes theorem to the development of intelligent transportation systems, however, 

is still somewhat novel. An early example is the French PRODYN system, which 

uses a real-time, urban, traffic-control algorithm (see Section 2.1.2, Kalman Filters) 

to estimate traffic-related variables such as queues and road saturation levels (Kessaci 

et al., 1989). 

Niehaus & Stengel (1991) have used probability methods to calculate traffic uncer­

tainties for autonomous vehicles operating on limited-access highways. This project 
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was a recent expansion of their work on the IGHLC (Intelligent Guidance for Head­

way and Lane Control) system. IGHLC is a rule-based expert system that effectively 

models the concepts of worst-case decision-making to make p~ovision for the most 

dangerous traffic situations, even if those events are not the most likely,to occur. 

Bayesian theorem implementation in data fusion is limited by this technique's 

inability to depict the level of uncertainty in a particular sensor state, as well as its 

inability to ensure consistency in a collection of interrelated propositions (Liu et al., 

1992). Other frequently cited drawbacks of a probabilistic-based fusion algorithm 

are its heavy computer processing and memory requirements (Hoballah & Varshney, 

1989). 

The solution to these problems, according to Liu et al. (1992), is to assume statis­

tical independence among each sensor's response and to derive a composite probability 

using only mathematical approximations. Hoballah and Varshney also recommended 

that the data from each sensor be treated as if they possessed an identical distribu­

tion. Hazlett et al. (1992) suggested using rules of mutual exclusiveness in order 

to reduce the computational burden; in order to distinguish between data that were 

either more certain or more significant, relative weights were assigned (Hazlett, 1992; 

Kim, 1992). 

2.2.3. Dempster-Shafer Evidential Reasoning 

As stated previously, Bayesian decision theory is limited in its ability to handle un­

certainty in sensor data. This can hinder the application of this data fusion technique 

because sensor data are by nature highly uncertain. Uncertainty can come in many 

forms, including 

• (1) incompleteness - sensors are likely to leave something out; 

• {2) imprecision - sensors may provide only approximations; 

• (3) inconsistency - sensor data may not always agree; and 

• (4) ambiguity - data streams from various sensors may be indistinguishable 

from one another (Hughes, 1989). 
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Dempster-Shafer Evidential Reasoning (DSER) is now being explored as a pro­

ductive alternative to Bayesian probability (Payne, 1993) because of its superiority in 

working with data uncertainty. DSER employs a confidence interval-of-certainty to 

replace I.he single-point probability of the Baycsiai1 method. Sarrna and Raju (1991) 

defined DSER as "a generalization of Bayes reasoning that offers a way to combine 

uncertain information from disparate sensor sources." One major advantage of DSER 

is that sensor data can contain varying levels of abstraction, meaning that " ... each 

sensor is allowed to contribute information at its own level of detail." 

The Dempster-Shafer method has several other advantages over Bayesian decision 

theory (Hughes, 1989). Most importantly, hypotheses do not have to be mutually 

exclusive, and the probabilities involved can be either empirical or subjective. Because 

DSER sensor data can be reported at varying levels of abstraction, a priori knowledge 

can be presented in varying formats. It is also possible to use any relevant data that 

may exist, as long as their distribution is parametric. Hughes further claimed that 

the Dempster-Shafer theory enables switching from probabilistic techniques to logical 

techniques when hypotheses become almost entirely true or false (Hughes, 1989). 

2.2.4. OSER Applications 

Despite its considerable advantages over the Bayes method, the only references to the 

application of DSER in transportation systems are those of Harris (1988) and Harris 

and Read (1989) in their work on autonomous guided vehicles (AGVs). These fully 

autonomous vehicles utilize on-board intelligent sensors to determine both the state 

of the vehicle and the outside driving environment. 

The majority of research involving DSER is connected with general object recog­

nition (Zhu et al, 1992; Lui et al., 1992; Lee & Leahy, 1989). Some of this work 

examined the usefulness of DSER techniques for tracking moving objects, as in the 

research of Chao (1990), Chao et al. (1990), and Puente et al. (1991). Chao (1990) 

applied the Dempster-Shafer theory in his development of a knowledge-based, moving­

target detector that identifies feature parameters using radar signals. Puente et al. 

compared the Bayes method to DSER in robot collision, danger-risk monitoring. This 

project, conducted in Madrid, Spain, was dubbed the Esprit-2483 Panorama Project. 

15 



As one might expect, application of the Dempster-Shafer method demands ex­

tensive computational capabilities. In fact, Puente et al. claimed that the computer 

memory requirements for DSER are double that of the Bayesian single-point prob­

ability method. Other shortcomings of the Dempster-Shafer method, according to 

Zhu & Lee (1993), include the manner in which it handles conflicting information 

and its reliance on the basic assumption that two pieces of evidence must have the 

same population universe. 

£2.5. Neural Networks 

Neural network technology has had a growing impact in the industrial and military 

sectors since the 1980s. An artificial neural network can be explained as a web-like, 

information processing structure that emulates the human brain's own learning and 

decision-making processes. Like Bayesian or DSER techniques, neural networks pro­

duce interpretive findings that incorporate input from various weighted, information 

sources. One major advantage a neural network decision algorithm has over either 

Bayesian or DSER methods is its capability to perform data fusion processing without 

the need for a priori information (Butini et al., 1992). But the real power of a neural 

network is its ability to process incoming data streams simultaneously rather than 

sequentially, as occurs with more traditional computing systems (DeClaris, 1992). 

A neural network uses many simple elements called neurons ( or processing nodes) 

to collect and correlate information. These neurons are connected by synapses that 

ascribe a weight to each neuron's output and then forward it, in a unidirectional 

path, to the next set of neurons. A neuron may have many inputs, but it has only a 

single output. In summary, the three defining elements of a neural network are the 

following: 

• The neuron's characteristics - the equations that define what a neuron will do. 

• The learning rule - the guide as to how the weights between various neurons 

will change according to the stimuli they receive. 

• The network topology - the manner iu which the neurons are connected. 
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Neural networks always require a "learning" period in order to fully establish and 

test the specific patterns or rules that will guide the system. The learning process 

employed in a typical multi-layer neural network is simple error feedback (Bavarian, 

1993). During this process, the network must be run through its paces so that each 

neuron can be "taught" the proper association between diverse data inputs and assim­

ilated output. This knowledge can be obtained through the observations of a human 

teacher, who repeatedly programs the desired weights given to each neuron until a 

known pattern is fully duplicated (DeClaris, 1992). Some of the most modern neural 

networks employ a topology that promotes self-learning through a preprogrammed 

learning algorithm. 

output 

processing (nodes) 

connections and 
memory (weights) 

processing (nodes) 

connections and 
memory (weights) 

processing (nodes) 

input 

Figure 2.6: Architecture of the original genre of neural 
network systems (DeClaris, 1992). 

Figure 2.6 depicts the architecture of the original genre of neural network systems, 

also known as a perceptron. The multi-layer architecture of the perceptron incorpo­

rates four main functions: input/output (data transfer in and out of the computer), 

processing (executing specific information-handling tasks), memory (storing informa­

tion), and the connections between the neurons (providing for information flow and 
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control). 

2.2.6. Neural Networks Applications 

During the past decade, several successful prototypes of neural network systems have 

been developed and implemented in a wide range of artificial intelligence applications. 

These have taken on such tasks as the generation of national weather forecasts and 

stock market predictions. Ford Motors has recently designed a neural network that 

can read sensor data from automobile engines and determine the probable cause of a 

malf1111d.ion (Chang, 1992). 

One common concern being addressed by several ITS projects is the challenge of 

accurately and quickly detecting traffic incidents. In a research project for the Texas 

Transportation Institute at Texas A & M, Chang (1992) used a neural network to 

improve computerized traffic surveillance and automatic incident detection. The sys­

tem, called Brainmaker, pattern-matched current traffic situations against historical 

information, especially during periods of high congestion or major traffic incidents. 

The author lists three key measures of system performance: the proportion of total 

incidents detected, the false alarm rate, and the average time taken to detect an in­

cident. Chang found his own neural network algorithm to be "reasonably fast and 

83 percent accurate," though its effectiveness was dependent on the accuracy of the 

traffic detector data used in training the neu.rons. 

One of the more ambitious ITS projects in the U.S. is ADVANCE, an acronym for 

Advanced Driver and Vehicle Advisory Navigation Concept (Kirson et al., 1992; Boyce 

et al., 1991). ADVANCE is a driver information system that just finished testing in 

the suburban Chicago area at the end of 1995. It is the first dynamic route guidance 

system of its kind in North America and has been sponsored by several public and 

private agencies, including the Federal Highway Administration (FHWA), the Illinois 

Department of Transportation, Motorola, Inc., and major Illinois universities. 

Designers involved with the ADVANCE program have proposed using a neural 

network along with a knowledge-based expert system (see next section) to perform 

the necessary artificial intelligence functions (Kirson, 1992). The authors plan to use 

a KJ3ES for the incident-detection algorithm al)d a neural network to fuse the output. 
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They explain that a neural network is helpful in solving pattern recognition problems 

that involve many potential interrelationships that are not easily recognized. 

Other transportation-related applications include Nijhuis et al. (1991), who em­

ployed neural networks in addressing car collision avoidance problems, and Kraiss 

and Kuttelwesch (1991), who tested and proved that neural networks are applicable 

as vehicle operator models in a two-lane car-driving task. 

Neural networks are being applied to many non-ITS projects as well. One such 

application is in the U.S. Navy for autonomous ship navigation through a channel 

(Stamenkovich, 1991). The basic 
" 

learning routine of this simple network is termed 

"learning with a critic." The network consists of only two neurons, one that explores 

the channel region through which the ship is navigating and another that critiques 

the actions of the first. System "forgetfulness" may be attributed to the small number 

of neurons incorporated in this model (Stamenkovich, 1991 ). 

A frequent focus of other non-ITS applications of neural networks is the usefulness 

of such systems for image processing, including exploration of the Earth's surface from 

a satellite (Lure et al., 1993); identification of an object based on each neuron's area 

of expertise regarding texture, motion, or depth (Booth et al., 1991); and image 

recognition problems in general (Fincher & Mix, 1990). 

2.3. LEVEL THREE FUSION 

2.3.1. Expert Systems 

The most .commercially successful branch of artificial intelligence is the field of ex­

pert systems. Knowledge-based expert systems (KBES) are a branch of artificial 

intelligence that strives to emulate the behavior of a human expert working within 

a well-bounded domain of knowledge (Liebowitz, 1988). So expert systems are, by 

definition, level three fusion techniques because they provide users with higher-level, 

informed recommendations for guiding human decision-making. 

Typically, an expert system has three major components: the dialog structure, 

the inference engine, and the knowledge base. The dialog structure is the interface 

between the user and the system. These interfaces are designed to verbally explain 
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their reasoning, much like a human expert. The inference engine "drives" the com­

puter to perform search strategies that arrive at various conclusions. The inference 

engine reasons in one of two ways: by forward chaining (which is driven by the data) 

or backward chaining ( moving backward from the goal to the steps that need to be 

taken to accomplish that goal). The third component of an expert system, its knowl­

edge base, is the set of facts and rules (heuristics) that guide a specific task at hand. 

These rules are usually constructed in the form of "IF-THEN" statements, but other 

knowledge representation methods are used, too. 

The true power of an expert system lies in its knowledge base, which also represents 

its biggest challenge because knowledge engineering is fraught with many difficulties. 

The first step in developing a knowledge base is to select an appropriate problem to 

be solved. Liebowitz (1993) offers the following suggestions: 

• Pick a problem that is costing people a fair amount of time and money. 

• Select a well-bounded problem whose solution can be encoded in a knowledge 

representation scheme. 

• Select a task that is performed frequently. 

• Choose a problem for which a general consensus exists on the proper solution. 

• Pick a task that utilizes symbolic knowledge, such as "IF-THEN" rules. 

The often painstaking process of acquiring knowledge for the expert system task 

can be simplified if developers choose an application for which a cooperative expert or 

set of experts exists. Many times, the majority of needed information ha.s already been 

documented. Liebowitz (1988) cautioned that it is not always easy to find an expert 

who is articulate and readily available. One final limiting factor to expert system 

technology that is often overlooked until it is too late is the process of transferring the 

technology to its intended users.· To ensure final product acceptance, user comments 

and confidence must be sought from idea conception to system changeover. 
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2.3.2. Expert Systems Applications 

Expert systems have been applied to a variety of tasks rangmg from sheep repro­

duction management in Australia., to boiler plant operation in Japan, to strategic 

management consulting in Europe (Liebowitz, 1993). Because of the wealth of liter­

ature available on this subject, the set of examples provided in this section will be 

limited to ITS applications or illustrations from the field of transportation. 

In ADVANCE, the driver information system currently being tested in Chicago 

(see section 2.2.5, Neural Networks), the developers have been using a KBES for 

the incident detection algorithm because its rule-based structure enables more di­

rect control over system design (Kirson, 1992). Furthermore, the expert system was 

relatively simple to develop because the required knowledge could be culled from a 

human expert. Figure 2.7 depicts the high-level architecture of ADVANCE. 

Figure 2. 7: Architecture of ADVANCE (Kirson et al., 
1992). 

As shown, ADVANCE has four major components (Kirson et al., 1992): 

• Mobile Navigation Assistant (MNA) - determines a vehicle's position, performs 

route planning, and provides route guidance information to the driver 
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• RF Communications Network (COM) - provides two-way radio communications 

between the Traffic Information Center and the MNAs in the vehicles 

• Traffic Information Center (TIC) - houses the central computer facilities a.nd 
' 

controls the Traffic Related Functions 

• Traffic Related Functions (TRF) - comprises the traffic data a.nd analytic func­

tions on which ADVANCE is based. 

The data fusion system,· incorporated in the TRF, correlates traffic probe reports 

and feedback from street signals with historical transit data to provide travel-time 

estimates for probe vehicles. Kirson et al. proposed using a knowledge-based expert 

system as the incident detection algorithm to identify abnormal traffic conditions. The 

authors explained that the rule-based structure of a KBES would allow developers to 

exert direct control over system design and to more rapidly validate system results 

(Kirson et al., 1992). 

As mentioned in the article "Bayesian Decision Theory," researchers Niehaus and 

Stengel (1991) designed a real-time expert system that guides autonomous vehicles on 

limited-access highways. The inputs to their Intelligent Guidance for Headway and 

Lane Control system (IGHLC) included the coordinates and velocity of the driver's ve­

hicle and surrounding traffic, the road geometry, current road conditions, and driver­

selected target cruising speeds and levels of safety. The job of the expert system is to 

analyze all this information and then provide appropriate driver commands. Figure 

2.8 shows an example of the expert system logic in an IGHLC system. 

Two additional examples of expert systems used in ITS projects include the Eu­

ropean projects PROMETHEUS (see also Section 2.1.2, Kalman Filters) and DRIVE 

(Martinez et al., 1990). The aim of both projects was to develop an expert system 

that can function as a car -co-pilot. An expert's knowledge of the driving environment 

was analyzed by system designers, who decomposed the driving task into several in­

dependent subtasks. These independent subtasks were then allocated to individual 

neurons in a neural network trained to recognize dangerous driving situations in real 

time. Researchers found that the knowledge-based neural networks employed in both 

projects improved the systems' performance (Martinez et al., 1990). 

/ 
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Figure 2.8: Expert system logic in an IGHLC system 
(Niehaus & Stengel, 1991 ). 

2.3.3. Blackboard Architecture 

Many of the newer expert systems have components in addition the three main el­

ements mentioned above (the dialog structure, the inference engine, and the knowl­

edge base). One component that is sometimes employed is a "blackboard," which is 

a global database used for temporarily recording any intermediate decisions made by 

the system. Typically, the blackboard keeps track of three types of decisions, known 

as the plan, the agenda, and the solution (Hayes-Roth, 1992). The "plan" is the 

overall strategy for solving the current problem; for example, the plan may recom­

mend processing all low-level sensor data first. The "agenda" keeps a record of the 

actions yet to be taken. The "soh,1.tion" represents the hypotheses that the system 

has generated thus far. Blackboards have been implemented successfully in a variety 
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of expert systems, including speech recognition, computer vision, and many types 

of military applications. Some researchers in the artificial intelligence community 

regard blackboard systems as the most promising scheme for the next generation of 

knowledge-based systems (Maitre et al., 1990). 

2.3.4. Blackboard Architecture Applications 

At this time, the engineering literature contains no examples of a blackboard archi­

tecture applied to ITS data fusion projects. But a blackboard architecture has been 

applied to general transportation issues in the work of Capocaccia et al. (1989) of 

Italy, who used expert surveillance to detect unexpected objects found at railroad 

crossings. In this project, called ATOME, the blackboard was used for both infer­

ence and control functions. Specifically, the authors describe a method for merging 

data coming from two channels of the same color video camera. These channels pro­

vided two images of different intensity, one being the actual scene and the other the 

"normal" background. 

Another transportation-related project that employed a blackboard system was 

that of Leardi et al. (1990), again of Italy, whose Distributed Object-Oriented 

Multi-sensor Recognition System (DOORS) was used to guide an autonomous ve­

hicle through natural outdoor scenes. DOORS is composed of a set of modules in 

which each module possesses the procedural knowledge to build up an interpretation 

of the viewed scene at a specific level of abstraction. 

Many blackboard systems have been used in military expert systems applications. 

For example, Brogi et al. (1989) used a blackboard prototype to merge reports from 

radar and other sensors with a priori information. The authors claimed that the 

major advantage of a blackboard architecture is that it enables system developers to 

partition the domain knowledge of the expert system into cooperating modules. This 

knowledge can then be kept separate from control knowledge. Figure 2.9 illustrates 

how domain knowledge (left) is separated from control knowledge in a blackboard 

system. 

Other military projects that have incorporated blackboard architectures include 

the work of Sikka et al. (1989), whose system was able to classify five different 

-
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Figure 2.9: Sample blackboard architecture (Leung & 
Williams, 1991). 
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aircraft by identifying their distinctive features, and Lliuas (1993) who attempted to 

formulate a generic, ideal blackboard for certain defense applications. 

2.3.5. Fuzzy Logic 

Many expert system developers are building their machine knowledge - that is, their 

IF-THEN decision rules - on the rapidly growing engineering discipline of fuzzy logic. 

Fuzzy logic is a type of set theory that mathematically describes objects or processes 

that cannot be categorized into "0-1" binary code. Thus, fuzzy logic is highly valued 

for its ability to integrate "fuzzy" human reasoning processes with the precision of 

- the computer. The concept of fuzzy logic is similar to Dempster-Shafer evidential 

reasoning, in that it is another means of dealing with data uncertainties. The data 

handled in fuzzy systems are often referred to as "soft" data. They are intended, for 

example, to describe ambiguous classifications such as big, small, rich, poor, fast, and 

slow. 

The mathematics of fuzzy set theory originated in 1965 with L.A. Zadeh, who 

developed a calculus of fuzziness that assigns objects or concepts to an interval scale 
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between Oand 1; the minimum value is "O" and the maximum value is "l." The math­

ematical operators available to fuzzy reasoning systems are the same as those used in 

traditional set theory: logical connectives such as AND and OR, the complements X 

and NOT X, and mathematical products or algebraic sums (Gupta, 1992). Addition­

ally, the concept of partial set membership also makes possible other mathematical 

operations not normally found in traditional set theory. Two of these operations in- . 

elude concentration, which is used to delineate a sharp boundary for a fuzzy set, and 

dilation, which provides a more flexible boundary. Figure 2.10 illustrates the fuzzy 

logic involved with classifying rainfall in a certain geographical region. 

Figure 2.10: Fuzzy logic involved with classifying rainfall 
(Gupta, 1992). 
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2.3.6. Fuzzy Logic Applications 

Fuzzy set logic is used in an array of decision and control applications: economic 

and management decision-making, medical diagnostic processes, enhancement of hu­

man perception, and large-scale engineering systems (Gupta, 1992). Transportation­

related applications of fuzzy systems have been designed for measuring automobile 

speeds and congestion levels, operating automatic trains using predictive logic, and 

selecting paths in autonomous vehicle navigation systems (Harris, 1988; Harris & 

Read, 1989). 
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The first two ITS implementations that employed fuzzy set logic in the United 

States were called Pathfinder and TravTek (Mammano & Sumner, 1989; Mammano & 

Sumner, 1991; Sumner, 1991; Rillings & Lewis, 1991; Case et al., 1991). Pathfinder 

was implemented in Los Angeles and TravTek in Orlando, Florida. With each of 

these systems, fuzzy logic permits traffic conditions to be described through quali- · 

tative measures such as "no congestion," "congested," "minor incident," or "major 

incident," instead of the less descriptive binary outputs of "congested" versus "uncon­

gested." The data fusion· algorithm in the two systems must be able to handle several 

hundred traffic "links" or junctions every minute, 24 hours per day. According to 

Sumner, two major problems are associated with fusing all these data: first, the data 

age at different rates, and, second, the quality of information varies according to the 

reliability of the source. 

The fuzzy logic process in Pathfinder and TravTek is constantly evaluating which 

of six data sources will be given priority in determining_system outputs. First, each of 

the six sources is assigned a quality value based upon its record of reliability. At any 

given moment, the final score for each source is determined by linearly decrementing 

the quality of the source score by the age of the data. When the duration of a traffic 

event is extended, as in the case of an accident or freeway back-up, a human operator 

or the fusion algorithm can override this aging factor. 

2.4. STATE-OF-THE-ART SUMMARY 

The role of level three data fusion processes is to transform high-volume, raw sensor 

data into low-volume, high-level information. Knowledge-based expert systems of one 

form or another predominate in these instances. But before any high-level information 

can be generated, the raw data from level one fusion must be provided via a Kalman 

filter algorithm or various methods of data association. The meaning to be gained 

from these raw sensor data is constructed using various probabilistic methods, such as 

Bayesian decision theory or Dempster-Shafer evidential reasoning. Neural networks 

are fast emerging as another alternative to Bayesian decision theory because of their 

ability to process complex information in parallel. Although the engineering literature 
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Table 2.2: Acronyms for leading ITS data fusion projects 

Acronym Full Naine Locations 
ADVANCE Advanced Driver and Vehicle Advisory 

Navigation Concept 
Chicago, Illinois 

AGVs Autonomous Guided Vehicles United Kingdom 
Brainmaker Metaphor referring to the human brain Texas A&M 
DRIVE Dedicated Road Infrastructure for 

Vehicle Safety in Europe 
Pan-European 

IGHLC Intelligent Guidance for Headway and 
Lane Control 

Princeton University 

Pathfinder A descriptive label Los Angeles, 
California 

PRODYN Dynamic Programming Toulouse, France 
PROMETHEUS Program for European Traffic with 

Highest Efficiency and Unprecedented 
Safety 

Pan-European 

TravTek Travel Technology Orlando, Florida 

is replete with examples of how these data fusion techniques are being applied in 

military and industry projects, they are just now beginning to be applied to ITS 

projects. 

Table 2.2 summarizes the leading ITS data fusion projects discussed throughout 

this report. 

Table 2.3 provides a synopsis of how the leading data fusion techniques described 

in this report have been bundled together in key ITS projects. These projects are 

listed according to the date of publication of the articles in which they were described. 

Note that the year given in column two represents the date the article was published. 

and not necessarily the date the ITS project was completed. Therefore, one must 

keep in mind that some of the data fusion techniques listed in Table 2.3 may not 

actually have been implemented in the final version of the ITS project cited. As 

Table 2.3 shows, the latest data fusion projects are typically more robust than the 

ITS prototypes of the late 1980s. 
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T a bl e 2 3 S ummary o ff USIOn . t ec h mques · as app I" 1e d to ITS 
Project Year Technique( s) Purpose 
(Author) 
ADVANCE 1992 Kalman filter Forecasts future traffic conditions 
( Kirson et al.) Neural network Pattern-matches current traffic 

situations with historical situations 
Expert system Identifies abnormal traffic conditions 
Fuzzy logic Permits traffic conditions to be 

described with qualitative measures 

PROMETHEUS 1992 Kalman filter 
rather than simple "yes-no" responses 
Constructs 4-D position estimates 

(Behringer et al.) 
(Martinez et al.) 1990 Expert system 

for autonomous driving 
Decomposes a driving task into 
independent subtasks 

Neural Network Allocates one neural net for 

Brainmaker 1992 Neural Network 
each driving subtask 
Pattern-matches current traffic 

(Chang) 
IGIILC 1991 Kalman filter 

situations wtih historical situations 
Determines vehicle position 

(Niehaus, Stengel) Bayesian Deals with traffic uncertainty 
Expert system Models concepts of Worst-Case 

Pathfinder 1991 Fuzzy logic 
Decision Making 
Permits traffic conditions to be 

(Sumner) described with qualitative measures 

TravTek 1991 Fuzzy logic 
rather than simple "yes-no" responses 
Permits traffic conditions to be 

(Sumner) described with qualitative measures 

DRIVE 1990 Expert System 
rather than simple "yes-no" responses 
Decomposes a driving task into 

(Martinez et al.) independent subtasks 
Neural network Allocates one neuron for each driving 

subtask 
PRODYN 1989 Kalman filter Estimates traffic-turning movements 
(Kcssaci et al.) Bayesian Estimates traffic-state variables, e.g., 

Application to 1989 DSER 
queues and saturation 
Determines state of AGV and outside 

AGVs: Autonomous world 
Guided Vehicles 
(Harris & Read) 
(Harris) 1988 Fuzzy logic Effectively controls AGV's lateral 

motions in real time 
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3. DATA FUSION: LOOP DATA FLOWS 

The initial sections of this report have outlined the current state-of-the-art for data 

fusion systems, with a special focus on their use in ITS projects. This section examines 

a specific data fusion application developed at the UW that uses the WSDOT Traffic 

Systems Management Center (TSMC) traffic management system (TMS) as the data 

source. Two main goals have been identified for the UW research effort. One is 

to gather traffic congestion information from all available sources in order to make 

reliable traffic predictions. Another is to support travelers by providing them with up­

to-the-rninute information on highway congestion to help guide their transit decisions. 

These have been accomplished by using occupancy and roadway volume data gathered 

from the TSMC traffic management system to estimate approximate vehicle speeds. 

These data are then displayed on ITS digital maps that travelers can use to guide 

their trip decision-making. 

Figure 3.1 shows the current architecture of the UW traffic data fusion system. 

There are four major parts to the system architecture. The first part is the TMSUW 

server that was put on the TSMC's VMS machine, identified as HARLEY. This server 

collects the available loop data from the real time database's (RTDB) main memory. 

After collecting the data, it broadcasts those data to a local area network at the 

TSMC,, where another machine "listens" to the broadcast port. 

The second part of the system is the server called LOOP REBROADCAST. This 

server resides on the machine called LOOPS, which is hooked into the local area 

network (LAN) at the TSMC. LOOP REBROADCAST was put on LOOPS rather 

than on the TSMC's VMS, HARLEY, to avoid possibly disturbing that system and 

slowing down its processing. The purpose of this server is to collect the broadcast 

data from TMSUW on VMS. Each data packet is then sent via a Tl link to the server 

LOOP REPEATER running on a machine located at the University of Washington 
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Figure 3.1: Architecture of the TSMC traffic reporting 
system. 
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The third part of this system, just mentioned, is the server called LOOP RE­

PEATER. The purpose of LOOP REPEATER is two-fold: it reduces the load on the 

LOOP REBROADCAST server, and it allows transmissions along the Tl telecom­

munications link to stay within capacity limitations. This arrangement also provides 

for future expansion of the system. LOOP REPEATER can be cascaded to increase 

the total number of users that can be accommodated. 

The fourth component of the system is the server needed to provide information 

to end users. This task is handled by LOOP SERVER, which transmits occupancy 

and volume data for each loop and station; it also transmits information on the 
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average speed and length for each speed trap. The TSMC traffic reporting system is 

configured so that servers can be added to handle different end user requests. 
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Figure 3.2: TSMC global memory databases. 
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3.1. TMSUW ON HARLEY 

As mentioned above, the TMSC traffic reporting system runs on a VAX machine called 

HARLEY at the TSMC. Upon starting, it builds several global memory databases, 

as shown in Figure 3.2. Three global databases are available: TMSJlTDB (real 

time database), TMS_RMD (ramp meter database), and TMS-FMDB (five-minute 

database). All of these global data sections are accessible, but the loop information is 

taken from the RTDB, which is updated every 20 seconds. The two other databases 

are based on the RTDB data but are normalized for different purposes. The actual 
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RTDB memory data block allocation contains two parts (see Figure 3.3). The first 

part is a name table that contains information on loop names and their offset in each 

20-second data record. The second part contains 181 20-second data records. Each 

record represents the complete loop recorded in a specific time (every 20 seconds). 

• Name Table: The name table contains all the loop names currently available in 

the RTDB. Each name is a combination of a cabinet name and a specific loop 

name. For example, "ES090D:_MN_l" is the loop in cabinet "ES090D," and 

it is on the main, north-bound lane number 1. The name table also contains 

information about the loop type. Three types are currently implemented. One 

is loop, one is station, and one is speed trap. A field also specifies the length 

of the loop, because all three types of data are not the same size. Finally, the 

field "offset" points to the correct position of the data associated with the loop 

name. 

• Data Record: The RTDB data record is updated every 20 seconds. One hour's 

worth of data equals 181 (60 x 3+1) records. When the RTDB data record is 

updated, the data just received from traffic reporter is put in the "new" data 

block; all the other data blocks shift one slot over towards the newest data. As 

a result, one hour's worth of data is kept within the new data block. In other 

words, every 20 seconds each data record rotates to the next data record slot, 

leaving room for most the current data to be put in the "Iiew" data block, and 

the oldest data record is automatically discarded. After rotation, the rotation 

scroll number in global memory is increased by one. 

The program TMSUW first reads the name table from the RTDB global memory 

and then writes it into a file. After writing the file, it starts the data collection cycle. 

The program maps to the global section of the RTDB database in each cycle and 

then sets up the corresponding pointers for each data block. It also calls the VMS 

set event system to calibrate the event flag at 20 seconds, which directs it to start a 

new collection cycle every 20 seconds. After the event is set for every 20 seconds, the 

program checks the global scroll value in the RTDB database to find out whether the 
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Figure 3.3: RTDB memory data block allocation. 
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data records have rotated. If data rotation has occurred, it means a new set of data 

have been received and put into the "new" data block. Otherwise, the system is reset 

by traffic reporters. 

In the first case, when a new set of data have been put into the "new" data 

block, the program collects the "new" data record, broadcasts it over the LAN in 

the TSMC, and finishes the collection cycle. The program then goes to the start of 

the collection cycle and waits for the next 20-second event. However, if the program 

discovers that the system has been restarted, it will wait a few minutes to ensure 

that the system successfully restarts and then will broadcast a special packet to the 

LAN. This special data packet lets the LOOP REBROADCAST server know that the 

TMSC report system has been restarted and that LOOP REBROADCAST needs to 

update the name table file. Figure 3.4 provides a flow chart of the TMSUW proc~ss. 
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· Figure 3.4: Flow chart of the TMSUW process. 
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3.2. LOOP REBROADCAST SERVER 

The server residing on the TSMC VMS machine broadcasts loop data over the LAN 

at the TSMC every 20 seconds. The LOOP REBROADCAST server running on the 

machine and hooked into the TSMC VMS monitors the LAN (subnet 192.0.2) to 

determine whether a broadcast data packet is available. The system architecture of 

the LOOP REBROADCAST server ca.n be divided into three components, as shown 

in Figure 3.5. When t.he LOOP REBROADCAST server is st,art,ed, it generates three 

child procei;scs t.o handle t,he tl-ifferent roquest,s or t.he server: 
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• Child Process Number 1: This process listens to the LAN to determine whether 

broadcast. data arc\ a.va.ila.blc. If they a.re, it se11ds the received data packet to 

child process 11urnbcr :t 

• Child Process Number 2: This process handles all the connection requests from 

other programs. After a connection has been accepted, it sends information 

about the remote program ( such as an IP address or socket port number) to 

child process number 3. The only connection currently in place is the one to 

the LOOP REPEATER server, but the system is capable of accepting other 

connection requests. 

• Child Process Number 3: This process actually sends the data packet received 

from child process number 2 to all the connection sockets. It also receives the 

broadcast data packet from child process number 1 via UNIX socket pipes. 

When data from process number 2 are received, it adds the information of 

remote end to the client list. When data from process number 1 are received, 

it sends the data packet to all clients on the client lisL 

Figure 3.5: LOOP REBROADCAST server components. 
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3.3. LOOP REPEATER SERVER 

The LOOP REPEATER server is similar to the LOOP REBROADCAST server. 

One difference is that the LOOP REPEATER requests a connection to the LOOP 

REBROADCAST server, whereas the LOOP REBROADCAST server monitors the 

LAN for broadcast data packets. A second difference is that the LOOP REPEATER 

server connects directly to the Internet rather than connecting to the UW via a Tl 

link. As a result, it has a greater capacity for handling a large number of clients. 

This was the main reason for establishing the LOOP REPEATER server. Another 

advantage of running the LOOP REPEATER is that it will allow for system expan­

sion, because several loop repeater servers can be linked in a cascading configuration 

to handle hundreds of client data requests. Figure 3.6 shows the system architecture 

of the LOOP REPEATER server. 

Figure 3.6: Architecture of the LOOP REPEATER 
server. 
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3.4. LOOP SERVER 

The LOOP server provides clients with occupancy, volume, average speed, and ayer­

age length traffic-related information. This server accepts connection requests from 

all interested clients. It also accepts user requests for specific loop data. When 

started,· the server generates three child processes, each of which handles different 

connection requests and manages different data sets, as requested by clients. The 

system architecture is shown in Figure 3. 7. The three child processes associated with 

the LOOP server are described below. 

• Child Process Number 1: The first child process makes a connection request to 

the LOOP REPEATER server and requests a raw data packet. The connection 

remains in place after it has been established as the LOOP server waits for the 

RTDB 20-second data update. Upon receiving a data packet from the LOOP 

REPEATER server, the LOOP server sends the data packet to child process 

number 3 via UNIX socket pipes. 

• Child Process Number 2: The second child process of the LOOP server handles 

all connection requests from end users who are interested in receiving loop data. 

When a client connection is granted, the LOOP server sends the information 

requested by the user to child process number 3 via UNIX socket pipes. It then 

resets to wait for connection requests from other interested clients. 

• Child Process Number 3: The third child process receives a client's information 

from child process number 2. After receiving the information, it also checks to 

see whether the client is asking for only a portion of the available data. For 

example, a client can specify a list of particular loops, all the available loops 

on a specific route (such as I-5), or all available loop data. When child process 

number 3 receives a data packet from process number 1, it assembles the correct 

data set requested by a client and transmits that data set via an Internet TCP 

socket. After completion, it resets and waits for data from either processes 

number 1 and number 2 or from clients. 
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Figure 3.7: System architecture. 
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4. DATA FUSION: LOOP SPEED 
ESTIMATES 

This chapter presents a robust algorithm for estimating mean traffic speed usmg 

single inductance loop measurements of volume ( counts of vehicle over a duration) 

and occupancy (the fraction of some total duration during which the inductance loop 

senses the presence of a vehicle). Mechanisms to estimate speed from single loops has 

been of interest to traffic engineers for some time, as speed is not directly observable 

from single loop measurements (Hall and Persaud, 1988; Leutzbach 1988; Persaud 

and Hurdle, 1988; Hall and Gunter, 1986; Persaud and Hall, 1989; Hall, 1987; Dillon 

and Hall, 1987; Gunter and Hall, 1986; Dailey, 1993). Recent advanced traveler 

information system (ATIS) initiatives have created a need for a robust solution to 

this problem for a new class of applications, namely those that provide information 

to travelers. Such an initiative (Seattle Wide-Area Information for Travelers, SWIFT) 

creates the need to formulate the present algorithm. 

This chapter acknowledges the statistical nature of the measurements taken with 

inductance loops and presents an algorithm to estimate speed that not only accounts 

for the statistical nature of the estimate but also provides a robustness test for the 

estimate. Four measurements are made by a traffic management system, Volume 

N(t), Occupancy O(t), speed s(t), and vehicle length l(t) (but only volume and 

occupancy are available from single loops). These measurements are by their nature 

realizations taken from the probability distributions of the underlying variables, at 

the time the measurement are made. Observations of these variables are typically 

combined to create estimates of speed; for example, several authors have used a 

ratio of volume (n) and occupancy (o) with correction (g) to estimate speeds= n/go 

(Hall and Persaud,_ 1988; Leutzbach, 1988; Persaud and Hurdle, 1988; Wardrop, 1952; 

Kurkjian et al., 1980; Nahi, 1973; Payne et al., 1987). ATIS efforts typically require 
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estimates of speed and travel times but rely almost completely on the measurements 

ma.de by traffic management systems, and as such they require the use of single 

inductance loop speed estimates. 

Previous work has not explicitly included the statistics of the estimated quantities 

when estimating variables that are not observable. This work explicitly considers the 

statistics of estimates created by using observations from traffic management systems. 

The typical measurements are volume (Ni) and occupancy (Oi), and the relationship 

between volume, occupancy, speed Si;, and length of the jth vehicle li; is, 

. _ _!_ ~ Ii; 0,- L..J ' (4.1)
T i=l Sij 

here T is the duration of the measurement. The speed and vehicle length are 

ndom variables with mean values and statistical distributions. We can express this 

 writing the speed and length observations as the expected value (mean) and some 

viation (!}.lii, !}.sii) that occurs for this observation, 

w

ra

by __, 

de

(4.2) 

(4.3) 

Combining these terms in the form of the RHS of equation (4.1) we get, 

(4.4) 

where the statistics of the deviation term are selected such that E {!}.lii} = E {,!},sij} = 
0 and E{*} is the expected value operator. 

Each measurement produces a pair of volume (Ni) and occupancy (Oi) values . 

To use the statistics of these measurements, let Ei denote the conditional expectation 

over all realizations that have the volume Ni. Then the conditional expected value of 

equation (4.1) is 

(4.5) 
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Inserting equation ( 4.4) in ( 4.5), we get 

E- { lij } = E· { l - + til } . (4.6)
' Sij S + tiSij 8 + tiSiji 

Rearranging the RHS, assuming that the variables (A~;,) and tilij are independent 

and recognizing that E {tilij} = 0, we get 

(4.7) 

Expand the RHS in a power series to obtain 

l'J.. } rE { L.l."s·.tJ tis~-IJ tis~-tJ }
Ei - =- i 1---+-----+.... (4.8){ 82 83si; 8 8 

Note that E{tisij} = 0, approximating the power series with three terms, and insert­

ing the result in equation (4.5), to obtain 

E-{O·} = Nii [l + Ei{tisfi}l · (4.9)' ' Ts 82 

The variance of the speed estimate can be written, u; = Ei{ tisf;}. Substituting and 

rearranging, we get, 
2 

sT [ 8 ]Ni= - - Ei {Oi} _ • (4.10)
2 21 (18 + s 

The measurement of the occupancy is also a random variable with some mean and 

some deviation from that mean for the ith measurement. We can express this as, 

(4.11) 

ubstitute (4.11) into (4.10) to obtain 

2 s2 
Ni 8T [ 8 ] tioi 8T [ ] ( 4.12) 
oi = T u; +s2 - oi T u; +s2 • 

his form has a deterministic component that contains only moments of the speed 

istribution and a stochastic component that contains tiOi. In the next section we 

onsider the solution of the deterministic component. 
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4.1. DETERMINISTIC MEASUREMENTS 

In the c~se where there a.re perfect measurements ( e.g. AOi =0), and ea.ch realization 

of volume and occupancy is equal to the mean of the proba.bHity distribution for that 

measurement, 

(4.13) 

Previous authors have asserted a ratio of measured volumes and occupancies, con­

verted to density by a constant, can be used to estimate speed (Hall and Persaud, 

1988; Persaud and Hurdle, 1988; Hall and Gunter, 1986; Ross, 1988). However, 

rearranging equation ( 4.13) to the same form, 

(4.14)i: (;) = 8 [er~: 82] 
demonstrates that such an estimate is biased by the variability of the speed. An 

estimate based on perfect measurements can be obtained by solving 

T -3 ~2 . 2Oi ls - Nis - NiCJs =O (4.15) 

for s. Equation (4.15) has the form J(s) = 0 and can be solved for the real root.1 

This "root finding" solution provides an estimator for s when there a.re idealized 

noiseless measurements; however, such is Il!eVer the case. The next section provides, 

an algorithm that addresses, real'. measurements. -
4.2. STOCHASTIC ME.ASUREMENTS 

Measurements from a traffic management system are realizations from statistical dis­

tributions. To address the variability of the observations we present a filtering ap­

proach. The general form for the dynamics and observer equations, for a. Kalman :6:hel'. 

are (Bozic, 1984) 

· X,H1 - Yk(X1c) +w1c (4.16) 

Z1c - h1e(X1c} +VJc. (4.17) 
-

1The formula of DeMoivne a.I.lows for (!)Be real and two imaginary roots (Kreyszig, 19179•). 
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For the kth time step we select our state variables to be the estimate of speed for 

the last two time steps. This autoregressive-like approach explicitly identifies a tem­

poral correlation between speed estimates and recognizes that s has some inherent 

variation in addition to the noise component. For our observables we use the ratio 

of the measurements for the two previous time steps. The selection of ~ for our ob­

servable is based on the examining equation ( 4.1) and noting that the variable Oi is 

inversely proportional to the state variables. The number of observations (Ni) used 

to construct Oi is used to normalized the observed value of Oi to a per-vehicle basis. 

Further, when Ni = 0, the observation from that time step is undefined ( as opposed 

to having zero value). We also note that in equation (4.12) there are deterministic 

and stochastic components, and we use the deterministic portion to construct the 

measurement function hk(Xk), and we identify 

[.::J 
Ok a2 

,t 
+s2 k.
-3Nk l sk 

X= Z= hk(Xk) = T (4.18) 
2 Ok-1 + as 8{£-1-2

-3Nk-1 8k-1 

where the measurement equation for hk(Xk) is nonlinear in the state variables. The 

linear Kalman filter equations are written (Bozic, 1984) 

(4.19) 

(4.20) 

where the measurement equation is a linear function of the state variables. To use the 

linear filtering result, we adopt the extended Kalman filter approach, which linearizes 

the measurement equation from ( 4.17) about a point Xt ( for implementation we select 

this point to be the last Xk) 

( 4.21) 

and create a new measurement equation, 

( 4.22) 
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where, 

(4.23) 

and, 

0 

(4.24) 

0 _ 31 [sf-:_24 +a;J 
T sk-2 

Our state-transition matrix, G, provides weights for the contribution of s from the 

.previous two time steps, 

(4.25) 

where a and b are selected using forward/backward least squares estimates of the 

AR(2) coefficients for the experimentally measured speed. The noise contributions 

are 

(4.26) 

R- O'~ 0 
[ N 

] (4.27)- 0 o-t 
N 

where, 

and values for the variances O'~ and o-; are obtained experimentally. With these 
N 

definitions we can use the linear filter solution, 

Pl - GPk-1 GT+ Qk-1 (4.28) 

Kk = p l kHk ' T [ HkP ' 1 kHk ' T +Rk rl (4.29) 

pk = pk 1 . 1-KkHkPk ' ( 4.30) 

Xk - Gxk-1 +Kk [zk - ilkGxk-1] (4.31) 

from Bozic (1984) to update the state variables at each time step. This provides an 

algorithm to create a maximum likelihood estimate of the speed using the observed 

volumes and occupancies. The confidence we place in this estimate can be tested by 

calculating the mean car length for ea.ch estimate using 

(4.32) 
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and comparing this estimate with long time estimates of the mean (l) and standard 

deviation (u1) of the length distribution. If (l - c) < lk < (l + d) (where c and dare 

selected based on the statistics of l), the speed estimate is deemed to be acceptable. 

4.3. EMPIRICAL RESULTS 

In this section presents empirical results for the two estimators presented and com­

pares these results with empirical speed trap_ measurements. The two new estimators 

presented here are (1) the "root finding" method based on the assumptions of deter­

ministic values and (2) the filtering method. 
I~ 

Measurements of traffic on Interstate 5 in Seattle were taken from the WSDOT 

Traffic Management System (TMS). The sites selected for testing have pairs of loops 

that both act as speed traps and measure volume and occupancy. The loop detector 

stations average (sum) the values for volume and occupancy over a 20-second interval, 

and all the data presented here are for 20-second averages. 

In the algorithms presented here, a mean value for length, l, is necessary, as is 

an estimate of the variability of the speed, 0'8 • To obtain a mean length for the 

calculation, we used the empirical length estimates from the TMS over a six-day 

period. The histogram of the observed lengths is shown in Figure 4.1, and the mean 

value used to seed the calculation is 25.63 feet. This empirically generated distribution 

of lengths is also useful for testing the robustness of the filter estimate. This test is 

described later in this chapter. 

The first empirical result presented here is the speed estimate from the roots of 

equation (4.15). These speed estimates are unbiased point estimates of the speed, 

given O's and l. A comparison of the root speed estimate and the speed measurement 

from the speed trap is shown in the center plot of figures 4.2 and 4.3. The estimate 

has a larger variance than the measured data but generally follows the character 
-~ 

of the measured speed. The mean of the deviation of the estimates of speed from 

the observed 20-second average speed (e.g. µe = E{(s - se)} ) indicate of the bias 

in the estimator. More conventional estimates using a "g" factor ( taken from the 

TMS) shown in the bottom plot in figures 4.2 and 4.3, have a bias relative to the 
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Figure 4.1: Histogram of effective vehicle length. 
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measurements (µ 9 = 3.1 ). The root methodology estimate has little bias relative to 

the measurements (/tr = 0.07). 

The second speed estimator, the Kalman filter approach, is derived from equations 

(4.28) through (4.31). The estimate is plotted (see the top plots in figures 4.2 and 

4.3) with the empirical speed from the speed trap associated with the loop detector 

from which we obtain the volume and occupancy. In this case, the estimate reflects 

the variability in the speed as a function of time with a smaller variance than the 

measured speed. 

It is important to note that the speed° trap realization is a point estimate of the 

traffic conditions and is not the mean value of the speed distribution for the traffic 

conditions as they exist. The robustness of the estimate of speed can be addressed 

using knowledge of the statistics for mean length as embodied in Figure 4.1 and a 

calculation of 1; from equation ( 4.32). Speed estimates that produce 1; values that 

are sufficiently far from the probability mass of the distribution are less reliable than 

those that produce values near the most probable lengths. The empirical distribution 

of length is an asymmetric, strongly peaked distribution containing 95 percent of the 
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probability mass in the range of 15 to 40 feet and with small probability of occurrence 

(less that 0.008) outside this range. The selection of the criteria for accepting the 

validity of a speed estimate is an engineering judgment based on the probability of 

occurrence. We define robust estimates of speed to be those estimates that produce 

a length estimate (for a 20-second average length) in the range of 15 to 40 feet, and 

those outside this range are deemed unreliable. This criterion provides an independent 

means to evaluate the reliability of our speed estimates. Figure 4.4 presents the mean 

lengths produced by using the filter estimates for speed. For comparison, Figure 

4.5 presents the lengths as measured by the TMS. It is clear that in some cases the 

estimate made by the filter violates the robustness criteria and would not be used for 

subsequent modeling calculations and traveler information systems. 

4.4. SPEED ESTIMATES CONCLUSIONS AND RECOM­
MENDATIONS 

This chapter presents an algorithm to estimate speed from single inductance loops, 

as well as providing an acceptability test for the estimates. The algorithm specifi­

cally acknowledges the statistics of the problem, and the acceptability test uses the 

statistics of one of the observables to set criteria for evaluating the reliability of the 

estimate. The algorithm is presented as a Kalman filter using a second-order system 

equation equivalent to an AR(2) model. The Kalman filter equations have an equiva­

lent algebraic form ( obtained by performing the matrix operations analytically) which 

reduces the computational complexity and makes the algorithm appropriate for use 

with single inductance loop data in both traffic management systems and traveler 

information systems. 

Recommendations for use of the algorithmic material presented include: 

1. The Kalman filter result can be implemented as a series of algebraic equations by 

solving the linear algebra in equations ( 4.28) through ( 4.31) making it tractable 

for use in ATMS and ATIS applications. 

2. The algebraic implementation of the filter solution can be implemented as C 

or C++ language modules and can then be supplied as a template for future-
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Figure 4.2: Speed estimates at free flow. 
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Figure 4.3: Speed estimates for low speeds. 
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Figure 4.4: Effective vehicle length estimates as a func­
tion of time. 
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Figure 4.5: Effective vehicle length as measured by the 
TMS. 
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5. CONCLUSIONS 

This project accomplished three significant tasks. First, a state-of-the-art literature 

review provided an organizational framework for categorizing the various data fusion 

projects that have been conducted to date. A popular typology was discussed to situ­

ate data fusion technologies into one of three levels, depending on the degree to which 

sensor data are correlated to provide users with meaningful transit recommendations. 

The trade-offs that accompany higher-level data fusion efforts - in terms of comput­

ing power and memory requirements - were noted. The advantages of multiple-sensor 

data fusion projects in terms of cost, accuracy, and reliability were also discussed, and 

contrasts were drawn with the-traditional deployment of highly accurate, single sen­

sors. Specific techniques of data fusion were described and their possible application 

to ITS projects was explored. In fact, this report is one of the first to consider how 

data fusion technology might be productively applied to the needs of transportation 

management. 

A second major component of this report is the description of a local data fu­

sion application. This project employs data fusion techniques to correlate input from 
,""I 

multiple highway sensors and generate reliable traffic predictions. The resulting in­

formation can be displayed for use by commuters as they choose from among various ·- transit options. The architecture of this data fusion system is described in detail. 
l 

The third component of the project was to create a statistically based algorithm to 

estimate speed from volume and occupancy measurements. The algorithm presented 

explicitly accounts for the statistics of the problem and provides a robustness test for 

the speed estimate. 
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A. GLOSSARY WITH ACRONYMS 

Adaptive (or artificial) neural networks (ANN): See Neural networks. 

ADVANCE (Advanced Driver and Vehicle Advisory Navigation Concept): 
A Chicago-area demonstration of ATIS and ATMS (see below) sponsored by the 
FHWA and the Illinois DOT. The objective is to evaluate the performance of a large­
scale dynamic route guidance system. The program seeks to relieve traffic congestion 
by using alternative approaches for driver information systems; dynamic traffic in­
formation acquisition; and incident detection, an~lysis and forecasting. Operation in 
the northwest suburbs of Chicago began in early 1994. 

Advanced Traffic Management Systems (ATMS): An array of institutional, 
human, hardware, and software components designed to monitor, control, and manage 
traffic on streets and highways. · 

Advanced Traveler Information Systems (ATIS): ITS technologies that assist 
travelers with planning, perception, analysis, and decision-making. 

AGV: See Autonomous guided vehicles. 

AI: See Artificial Intelligence. 

Artificial intelligence (AI): The subfield of computer science concerned with un­
derstanding the nature of intelligent action and constructing computer systems ca­
pable of such action. It embodies the dual motives of furthering basic scientific 
understanding and making computers more sophisticated in the service of mankind. 

ATIS: See Advanced Traveler Information Systems. 

ATMS: See Advanced Traffic Management Systems. 

Autonomous guided vehicles (AGV): Fully autonomous vehicles that utilize on­
board intelligent sensors to determine the state of the vehicle itself and the outside 
world. 

Bayesian decision theory: The process of selecting an action with the greatest 
expected value of utility given a probabilistic model describing an uncertain state. It 
is based upon Bayes' Theorem, a centuries-old formula used to determine conditional 
probabilities given a priori (i.e., prior) evidence. These revised probabilities are called 
a posteriori probabilities. 

Blackboard architecture: A specialized type of expert system that contains a 
system component called a blackboard. A blackboard is a global database that can 
manage multiple cooperating sources of knowledge. Many in the AI community re­
gard blackboard systems as the most promising scheme for the next generation of 
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knowledge-based systems. (See also Expert systems.) 

Cluster analysis: A general approach to multivariate problems whose aim is to 
detect whether individual items fall into groups or clusters. 

Data association: A general method of level one fusion in which one set of sensor 
data is correlated with another set of sensor data. For instance, new traffic infor­
mation can be compared against historical traffic patterns to determine whether an 
unusual event is taking place. 

Data fusion: Has to do with the combination of complementary and sometimes 
competing sensor data into a reliable estimate of the environment to achieve a "whole 
that is greater than the sum of its parts." 

Dempster-Shafer evidential reasoning (OSER): A generalization of Bayes rea­
soning that offers a way to combine uncertain information from disparate sensor 
sources by setting up confidence intervals of certainty to replace single-point proba­
bilities. 

DOT: Department of Transportation. Responsible for ITS implementations. 

DRIVE (Dedicated Road Infrastructure for Vehicle Safety in Europe): A 
European ITS project that uses an expert system to decompose driving tasks into 
subtasks and a neural network to allocate these subtasks to individual processing 
elements. 

OSER: See Dempster-Shafer evidential reasoning. 

Expert systems (or knowledge-based expert systems): A computer program 
that emulates a human expert in a well-bounded domain of knowled~e. Typically, an 
expert system has three major components: the dialog structure, the mference engine, 
and the knowledge base. The dialog structure is the interface between the user and 
the system. These interfaces are designed to verbally explain their reasoning, much 
like a human expert would. The inference engine "drives" the computer to perform 
search strategies that arrive at various conclusions. The knowledge base is the set of 
facts and rules (heuristics) about the specific task at hand. 

FHWA: The Federal Highway Administration. Responsible for ITS implementations. 

Figure of merit (FOM): A performance rating that governs the choice of a device 
for a particular application. For example, the figure of merit of a magnetic amplifier 
is the ratio of usable power gain to the control time constant. 

FOM: See Figure of merit. 

Fuzzy logic: A type of mathematical logic in an expert system that relaxes the 
requirement that all logical statements must be either completely true or completely 
false. This permits traffic conditions to be described using qualitative measures rather 
than rigid binary responses. 

Gating techniques: Refers to using an electrical circuit to operate as a selecting 
switch, allowing conduction only during selected time intervals or when the signal 
magnitude is within certain limits. 
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TravTek: Located in Orlando, Florida, TravTek (along with the Pathfinder project 
in southern California) was tbe first ITS program in the United States. TravTek was 
a three-year joint effort of the American Automobile Association, FHWA, Florida 
DOT, and General Motors. It employed ATIS technologies to maximize consumer 
use of traffic and service information. 

Worst-Case Decision Making: A probabilistic means of predicting the evolution 
of a controlled dynamic systems state and its environment, using the worst plausible 
scenario as a basis for allocating resources. 
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B. ANNOTATED BIBLIOGRAPHY OF 
SELECTED DATA FUSION REVIEWS 

Blackman, S.S. and T.J. Broida. "Multiple Sensor Data Association and Fusion in 
Aerospace Applications." Journal of Robotic Systems. June 1990:(445-85). An in­
depth review of data association and data fusion techniques as applied to aerospace 
technology. 

Hackett, J.K. and M. Shah. "Multi-sensor Fusion: A Perspective." Proceedings 1990 
IEEE International Conference on Robotics and Automation. 13-18 May 1990: 
Cincinnati, OH. Vol. 2:(1324-30). Classifies and discusses six categories of data fusion 
applications: scene segmentation, scene representation, 3-D shape, sensor modeling, 
autonomous robots, and object recognition. 

Hager, G.D. "Using Resource-bounded Sensing in Telerobotics." 91 /CAR. Fifth In­
ternational Conference on Advanced Robotics: Robots in Unstructured Environments. 
19-22 June 1991: Pisa, Italy. Vol. 1:(199-204). Does an excellent job of pointing out 
some of the limitations of the current technology, especially as applied in unstructured 
environments (like underwater, outer space, etc.). 

Harris, C.J. "Distributed Estimation, Inferencing and Multi-sensor Data Fusion for 
Real Time Supervisory Control." Artificial Intelligence in Real-Time Control 1989. 
Proceedings of the /FAG Workshop. 19-21 Sept. 1989: Shenyang, China. (19-24). The 
author reviews fuzzy logic, Bayesian theory, Dempster-Shafer evidential reasoning, 
and other methods as applied to autonomous guided vehicles (AGVs). 

Linn, R.J. and D.L. Hall. "A Survey of Multi-sensor Data Fusion Systems." Proceed­
ings of the SPIE - The International Society for Optical Engineering. 1-2 April 1991: 
Orlando, FL. (13-29). Provides a survey of more than fifty defense-related data fusion 
systems and summarizes their application and key techniques used. Also presents a 
taxonomy of fusion techniques according to their fusion level, i.e., the amount of 
information provi<le<l to the human user. 
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C. SUPPLEMENTAL ANNOTATED 
BIBLIOGRAPHY 

-
Beckerman, M. "A Bayes-maximum Entropy Method for Multi-sensor Data Fusion." 
Proceedings of the 1992 IEEE International Conference on Robotics and Automation. 
12-14 May 1992: Nice, France. IEEE Comput. Soc. Press, 1992. Vol. 2: (1668-1774). 

Abstract: The author introduces a Bayes-maximum entropy formalism for 
multi-sensor data fusion and presents an application of this methodology 
to the fusion of ultrasound and visual sensor data as acquired by a mobile 
robot. In this approach the principle of maximum entropy was applied to 
the construction of priors and likelihoods from data. Distances between 
ultrasound and visual points of interest in a dual representation were used 
to define Gibbs likelihood distributions. Both one- and two-dimensional 
likelihoods are presented and cast into a form which makes explicit their 
dependence on the mean. The Bayesian posterior distributions were used 
to test a null hypothesis, and maximum entropy maps used for navigation 
were updated using the resulting information from the dual representation. 

Behringer, R., Holt, V., and D. Dickmanns. "Road and Relative Ego-state Recogni­
tion." Proceedings of the Intelligent Vehicles '92 Symposium. 29 June-I July 1992: 
Detroit, MI. IEEE, 1990 (385-90). 

Abstract: A road interpretation module is presented, which is part of a 
real-time vehicle guidance system for autonomous driving. Based on bi­
focal computer vision, the complete system is able to drive a vehicle on 
marked or unmarked roads, to detect obstacles, and to react appropriately. 
The hardware is a network of 23 transputers, organized in modular clus­
ters. Parallel modules performing image analysis, feature extraction, ob­
ject modelling, sensor data integration and vehicle control, are organized 
in hierarchical levels. The road interpretation module is based on the prin­
ciple of recursive state estimation by Kalman filter techniques. Internal 
4-D models of the road, vehicle position, and orientation are updated u3ing 
data produced by the image-processing module. The system has been im­
plemented on two vehicles (VITA a.nd Va.MoRs) and demonstrated in the 
framework of PROMETHEUS, where the ability of autonomous driving 
through narrow curves and of lane changing were demonstrated. Mean­

- while, the system has been tested on public roads in real traffic situations, 
including travel on a German Autobahn autonomously at speeds up to 85 
km/h. 

Belcastro, C.M., Fischl, R., and M. Kam. "Fusion Techniques Using Distributed 
Kalman Filtering for Detecting Changes in Systems." Proceedings of the 1991 Amer­
ican Control Conference. 26-28 June 1991: Boston, MA. American Autom. Control 
Council, 1991. Vol. 3: (2296-2298). 
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Abstract: A comparison is made of the performance of two detection 
strategies that are based on different data fusion techniques. The strate­
gies detect changes in a linear system. One detection strategy involves 
combining the estimates and error covariance matrices of distributed Kalman 
filters, generating a residual from the used estimates, comparing this resid­
ual to a threshold, and making a decision. The other detection strategy 
involves a distributed decision process in which estimates from distributed 
Kalman filters are used to generate distributed residuals which are com­
pared locally to a threshold. Local decisions are made and these decisions 
are then fused into a global decision. The performance of these two de­
tection schemes is compared, and it is concluded that better performance 
is achieved when local decisions are made and then fused into a global 
decision. 

Blackman, S.S. and T.J. Broida. "Multiple Sensor Data Association and Fusion in 
Aerospace Applications." Journal of Robotic Systems. June 1990: (445-85). 

Abstract: Presents a summary of some of the issues and methods encoun­
tered in the use of multiple sensors for surve.illance and tracking problems 
that a.rise in aerospace and defense. Applications include air traffic con­
trol using multiple, internetted, ground-based radar sensors, ship-based 
air defense systems, and air-to-air systems for drug interdiction and for 
air combat. The functions of data association and data fusion are cen­
tral to any multiple-sensor fusion application. The authors address these 
topics for both collocated anq distributed sensing systems. The use of 
multiple hypothesis tracking (MHT) for data association is discussed as 
a way of dealing with data association ambiguities. The closely related 
problem of allocating sensor resources is also addressed, and a general 
methodology for evaluating multiple sensor tracking system performance 
is presented. 

Booth, D.M., Thacker, N.A., Mayhew, J.E.W., and M.K. Pidcock. "Combining the 
Opinions of Several Early Vision Modules Using a Multi-layer Perceptron." Inter­
national Journal of Neural Networks - Research & Applications. June-Dec. 1991: 
(75-80). 

Abstract: Deals with the solution of a binary classification problem by 
acting on the combined evidence of several early vision modules. Each 
module provides an opinion on the identity of an individual image element 
based on a specific area of expertise, such as texture, motion, depth, etc. 
The problems involved in reaching a consensus of opinion are discussed 
and the activeness of using a trained, multi-layer perceptron as a tool for 
data fusion is examined. Some preliminary results are reported. 

Boyce, D.E., Kirson, A., and J.L. Schofer. "Design and Implementation of AD­
VANCE: the Illinois Dynamic Navigation and Route Guidance Demonstration Pro­
gram." VNIS '91. Vehicle Navigation and Information Systems Conference Proceed­
ings. 20-23 Oct. 1991: Dearborn, MI. Soc. Automotive Eng., 1991. Vol I: (415-26). 

Abstract: An overview is presented of ADVANCE (Advanced Driver & 
Vehicle Advisory Navigation Concept), a program to design, implement 
and evaluate an in-vehicle navigation and route guidance system with 
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dynamically updated travel time information. The implementation of this 
program is the largest field demonstration of an Intelligent Transportation 
System (ITS) conducted thus far. A brief description is given of this 
demonstration program and the activities planned for its design and test 
phase. 

Broatch, S.A. and A.J. Henley. "An Integrated Navigation System Manager Using 
Federated Kalman Filtering." Proceedings of the IEEE 1991 National Aerospace and 
Electronics Confer'ence NAECON 1991. 20-24 May 1991: Dayton, OH. IEEE, 1991. 
Vol. 1: (422~426). 

Abstract: A federated Kalman filter architecture has been developed in 
which Kalman filter processing is distributed among the navigation sen­
sors to be integrated. Each navigation sensor with its Kalman filter can, 
in conjunction with the reference INS (Inertial Navigation System), be 
considered as a subsystem which functions as an independent manager. 
A central data fusion function is used to integrate the information from 
these navigators. Such a federated architecture can offer a number of ad­
vantages over one with a single, central Kalman filter. These advantages 
include improved failure detection and correction, improved redundancy 
management, and lower costs for system integration. GEC Avionics has 
developed a system for the integration of INS with GPS (Global Position­
ing System) and TRN (Terrain Referenced Navigation), together with 
other navigation aids. Results are presented to demonstrate the perfor­
mance and the benefits of using a federated approach. 

Brogi, A., Filippi, R., Gaspari, M., and F. Turini. "An Expert System for Data 
Fusion Based on a Blackboard Architecture." Expert Systems and Their Applications 
- Specialized Conference. Artificial Intelligence and Defense, Expert Systems and 
Maintenance, Expert Systems and Medicine. 30 May-3 June 1988: Avignon, France 
(147-65). 

Abstract: Data fusion addresses the problem of merging data coming 
from different sensors with other information sources. In this paper, an 
approach to data fusion which uses AI techniques is shown. An expert 
system prototype, merging reports received from a radar and a jammer 
strobe with a priori known information, is presented. The system is built 
upon a general blackboard architecture, which has been built on top of 
Prolog. The characteristics of the blackboard architecture model have 
allowed the authors to partition all the domain knowledge into cooperating 
modules and to keep it separated from control knowledge. The handling 
of probabilistic reasoning, which is fundamental for data fusion problems, 
has been managed using the Dempster-Shafer theory of evidence. Finally, 
the implementation environment is constituted by NIP Edinburgh Prolog 
and C running under Unix 4.2 on a Sun 3/180. 

Buede, D.M. and E.L. Waltz. "Benefits of Soft Sensors and Probabilistic Fusion." 
Signal and Data Processing of Small Targets 1989. Proceedings of the SPIE - The 
International Society for Optical Engineering. 27-29 March 1989: Orlando, FL. 
SPIE, 1989 (309-20). 
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Abstract: Describes and quantifies the benefits of soft-decision sensors 
and probabilistic data fusion relative to hard-decision sensors and nonnu­
merical ( e.g. Boolean logic) data fusion. Hard sensors measure signals 
and return "yes/no" responses (declarations) based upon decision criteria 
within each sensor. Soft sensors return a measure of confidence (such as 
a probability) that quantifies the uncertainty in detection and/or iden­
tification. These soft responses are integrated via a fusion algorithm. 
The composite confidence derived by fusion from all sensors is compared 
against a single decision criterion to make the detection/identification dec­
laration. A soft sensor suite with Bayesian fusion is shown to provide a 
30 percent increase in range at identification. This occurs only when the 
probabilistic uncertainty regions for sensor measurements overlap. This 
means more than one sensor is providing probabilistic measurements at a 
given range for the particular target parameters. 

Butini, F., Cappellini, V., and S. Fini. "Remote Sensing Data Fusion on Intelligent 
Terminals." European Transactions on Telecommunications and Related Technologies. 
Nov.-Dec. 1992: (555-63). 

Abstract: This paper focuses on the possibilities offered by intelligent 
terminals applied to multi-sensor image data processing. The state of 
the art of remote sensing and its future development are briefly analyzed 
in order to underline the need for an intelligent use of the large amount 
of data that will be available in future years. Data fusion is introduced 
as an interesting technique both to combine data collected by remote 
sensors and to extract the information which is not available from each 
separate informative channel. Artificial neural networks are presented 
as a powerful tool to be used in data fusion processing because of their 
capability to process data without any a priori information of the data set. 
An example of neural network processing on multi-sensor airborne data 
is given in order to show the effective possibility offered by an intelligent 
terminal in high-level processing of sensor data. 

Cameron, A. and H.L. Wu. "Identifying and Localizing Electrical Components: A 
Case Study of Adaptive Goal-directed Sensing." Proceedings of the 1991 IEEE Inter­
national Symposium on Intelligent Control. 13-15 Aug. 1991: Arlington, VA. IEEE, 
1991 (495-500). 

Abstract: The ability to reconfigure sensors dynamically between data 
collection operations ( often termed active sensing)· enables planning of 
sensing strategies. Each sensory action will improve knowledge of the 
environment; hence, each sensory action can be chosen utilizing a larger 
knowledge base than was available for previous actions. Consequently, 
a strategy consisting of a sequence of sensory actions can be planned 
in an adaptive manner, with data obtained from each action influenc­
ing the selection of subsequent actions. A system for identifying and 
localizing electrical components is described which is both adaptive and 
goal-directed. The mathematical framework of Bayesian decision theory 
is applied to the problem of selecting appropriate sensor actions in the 
presence of uncertain knowledge about the environment. This enables a 
consistent Bayesian framework for reasoning with uncertainty for the as­
sociated tasks of world modeling, sensor modeling, data fusion, and the 
selection of sensory actions. 
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Capocaccia, G., Damasio, A., Regazzoni, D.S., and G. Vernazza. "Data Fusion Ap­
proach to Obstacle Detection and Identification." Proceedings of the SPIE - The In­
ternational Society for Optical Engineering. 7-9 Nov. 1988: Cambridge, MA. SPIE, 
1988. Vol. 1003: (409-19). 

Abstract: Data fusion is applied to the problem of detecting and identi­
fying obstacles in a static ( or slowly changing) known scene. Automatic 
detection of unexpected objects is of crucial importance in reducing the 
need for personnel in surveillance stations. Possible applications to the 
area of rail transportation systems are currently being explored, and re­
sults for a level crossing monitoring situation are presented. The authors 
define a framework that allows the exploitation of multiple sensors or mul­
tiple operation modes of a single sensor. As an example, they describe a 
way of merging the data coining from two channels (the RG bands) of a 
color video camera, with each providing two intensity images ( the actual 
scene and the "normal" background). The system can profit from the in­
troduction of additional sensors, like a laser range finder to aid in locating 
obstacles in 3-D space. The proposed system architecture is based on a 
blackboard organization for both inference and control. Particular care 
has been exercised in optimizing the data flow through system modules by 
means of a heterarchical control structure. Object-oriented programming 
is extensively used to isolate the system's basic units in order to allow 
future parallel implementation. 

Case, E.R., Van Aerde, M, and M. Krage. "Supporting Routines for Modelling the 
Traffic Responsive Features of the TravTek System using INTEGRATION." VNIS 
'91. Vehicle Navigation and Information Systems Conference Proceedings. 20-23 
Oct. 1991: Dearborn, MI. Vol. 2: (681-91). 

Abstract: The INTEGRATION simulation model is being applied at 
Queen's University, on behalf of General Motors Research Labs, as a tool 
to perform a dynamic traffic simulation study of the TravTek route guid­
ance experiment in Orlando, Florida. While there were several different 
ways in which the INTEGRATION model itself was adapted to be able 
to model the dynamic and route guidance features of the TravTek system, 
the authors focus on describing the associated dynamic modeling routines 
which needed to be modified and/or developed in order to generate the 
dynamic inputs to the INTEGRATION model. They describe the need 
and role of these supporting routines and illustrate that the quality of 
the TravTek simulation study results is ultimately highly dependent on 
the capability of the supporting routines to properly generate extensive 
dynamic input data. Such data are required to properly utilize dynamic 
traffic simulation models like INTEGRATION. 

Chang, E.C.P. "A Neural Network Approach to Freeway Incident Detection." VNIS 
'92. The Third International Conference on Vehicle Navigation & Information Sys­
tems. IEEE, 1992 (641-47). 

Abstract: Freeway and arterial incidents often occur unexpectedly and 
cause undesira.ble congestion and mobility loss, even where surveillance, 
communications, and control (SC &C) systems are in operation. Auto­
matic incident detection should apply available information observed from 
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freeway detector stations. The most commonly used method is the com­
parative or California-type algorithm in which traffic operational charac­
teristics between consecutive detector stations are continuously monitored 
and closely evaluated. This study explores the neural network approach 
that applies historical detector data to reduce possible false alarms and 
lessen the operational impacts of each incident. 

Chao, J.J. "Knowledge-based Moving Target Detector." ISNCR-89. Noise and Clut­
ter Rejection in Radars and Imaging Sensors. Proceedings of the Second International 
Symposium. 14-16 Nov. 1989: Kyoto, Japan. Inst. Electron. Inf. Commun., 1990 
(520-525). 

Abstract: A knowledge-based, moving target detector is proposed. It ex­
tracts feature parameters from radar signals. Then, a knowledge base in­
terprets the value of each feature parameter in terms of Dempster-Shafer's 
(1976) belief or disbelief for the associated hypotheses. Finally, Demp­
ster's (1968) combining rule is employed to the fusion of the decision 
information. 

Chao, J.J., Chen~, C.M., and C.C. Su. "A Moving Target Detector Based on In­
formation Fusion.' Record of the IEEE 1990 International Radar Conference. 1 -10 
May 1990: Arlington, VA. IEEE, 1990 (341-4). 

Abstract: Moving target detector (MTD) related multiple-hypothesis test­
ing is considered, and the Dempster-Shafer theory is applied to this prob­
lem. Feature parameters are extracted from radar signals, and the value of 
eMh fea.ture parameter is interpreted in terms of Dempster-Shafer's belief 
or disbelief for the associated hypotheses. Using Dempster's combining 
rule, a generalized likelihood ratio test is derived. 

Collins, J.B. and J.K. Uhlmann. "Efficient Gating in Data Association with Multi­
variate Gaussian Distributed States." IEEE Transactions on Aerospace and Electronic 
Systems. July 1992: (909-16). 

Abstract: An efficient algorithm for evaluating the associations between 
two sets of data with Gaussian error is described, e.g. between a set 
of measured state vectors and a set of estimated state vectors. A gen­
eral method is developed for determining, from the covariance matrix, 
minimal cl-dimensional error ellipsoids for the state vectors which always 
overlap when a gating criterion is satisfied. Circumscribing boxes, or cl­
ranges for the data ellipsoids are then found and whenever they overlap 
the association probability is computed. For efficiently determining the in­
tersections of the cl-ranges, a multidimensional search tree method is used 
to reduce the overall scaling of the evaluation of associations. Very few 
associations that lie outside the predetermined error threshold or gate are 
evaluated. The search method developed is a fixed Mahalanobis distance 
search. Empirical tests for variously distributed data in both three and 
eight dimensions indicate that the scaling is significantly reduced. Com­
putational loads for many large-scale data association tasks can, therefore, 
be significantly decreased using this or related. methods. 
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Durrant-Whyte, H.F., Rao, B.Y.S., and H. Hu. "Toward a Fully Decentralized Ar­
chitecture for Multi-sensor Data Fusion." Proceedings 1990 IEEE International Con­
ference on Robotics and Automation. 13-18 May 1990: Los Alamitos, CA. IEEE 
Comput. Soc. Press, 1990. Vol. 2: (1331-1336). 

Abstract: A fully decentralized architecture is presented for data fusion 
problems. This architecture takes the form of a network of sensor nodes, 
each with its own processing facility, which together do not require any 
central processor or any central communication facility. In this architec­
ture, computation is performed locally and communication occurs between 
any two nodes. Such an architecture has many desirable properties, in-· 
eluding robustness to sensor failure and flexibility to the addition or loss 
of one or more sensors. This architecture is appropriate for the class of ex­
tended Kalman filter-based (EKF) geometric data fusion problems. The 
starting point for this architecture is an algorithm which allows the com­
plete decentralization of the multi-sensor EKF equations among a number 
of sensing nodes. This algorithm is described, and it is shown how it can 
be applied to a number of different data fusion problems. An appli~ation 
of this algorithm to the problem of multi-camera, real•time tracking of 
objects and people that are moving through a room is described. 

Easthope, P.F., Goodchild, E.J.G., and S.L. Rhodes. "A Computationally Tractable 
Approach to Real-time Multi-sensor Data Fusion." Proceedings of the SPIE - The 
International Society for Optical Engineering. 27-29 March 1989: Orlando, FL. 
SPIE, 1989. Vol. 1096: (298-308). 

Abstract: A target-oriented method for sensor data fusion is being devel­
oped to provide practical, automated, multi-sensor tracking in multiple­
target environments of any size. Partitioning by target track offers the 
g_reatest scope for processing concurrency and forms the basis of the de­
sign. 

Fennelly, A.J., Woosley, J.K., McMahon, D.M., Bhuminder, S., and J.W. Wolfs­
berger. "Multivariate Data Spaces and Multivariable Systems Analysis for Explosive 
Detection Systems Using X-rays." Proceedings of the SPIE - The International So­
ciety for Optical Engineering. 23-24 July 1992: San Diego, CA. SPIE, 1992. Vol. 
1736: (159-70). 

Abstract: The problems of maximizing the probability of detection while 
minimizing the probability of false alarms (P/sub F/) in the case of ex­
plosive device detection for aviation security is addressed. X-ray explosive 
detection systems (XREDS) are highlighted and difficulties with currently 
available detection systems are reviewed: The basic problem lies in the 
use of single-hit, single-phenomenology sensor systems. Cluster analysis, 
factor an·alysis, and principal component analysis are applied to provide 
effective discrimination between explosive devices and false alarm objects. 
A key analysis is the incorporation of binary cumulative probability of de­
tection to combine the data from several sensors or signatures and avoid 
a cumulative increase in P/sub F/. 

Fincher, D.W. and D.F. Mix. "Multi-sensor Data Fusion Using Neural Networks." 
1990 IEEE International Conference on Systems, Man, and Cybernetics. 4-7 Nov. 
1990: Los Angeles, CA. IEEE, 1990 (835-8). 
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Abstract: A general approach to the use of neural networks for data 
fusion is outlined. The discussion begins with examples of data fusion 
problems and a pattern recognition example is given to illustrate the con­
cepts involved in data fusion. The differences between using post- and 
pre-detection signals and the advantages of using the latter are discussed. 
How to apply a neural network to the data fusion problem is demonstrated, 
and experimental results for a character recognition task are given. The 
general approach applies to a variety of practical situations, including 
robot navigation and military environment assessment/evaluation. 

Hackett, J.K. and M. Shah. "Multi-sensor Fusion: A Perspective." Proceedings 
1990 IEEE International Conference on Robotics and Automation. 13-.18 May 1990; 
Cincinnati, OH. IEEE, 1990. Vol. 2: (1324-30) 

Abstract: A survey of the state of the art in multi-sensor fusion is pre~ 
sented. Papers related to data fusion are surveyed and classified into six 
categories: scene segmentation, representation, 3-D shape, sensor mod­
eling, autonomous robots, and object recognition. A number· of fusion 
strategies are employed to combine sensor outputs. These strategies range 
from simple set intersection, logical and operations, and heuristic produc­
tion rules to more complex methods involving nonlinear, least-squares fits 
and maximum-likelihood estimates. Sensor uncertainty has been modeled 
using Bayesian probabilities and support and plausibility involving the 
Dempster-Shafer formalism. 

Hager, G.D. "Using Resource-bounded Sensing in Telerobotics." 91 ICAR. Fifth In­
ternational Conference on Advanced Robotics: Robots in Unstructured Environments. 
19-22 June 1991: Pisa, Italy. IEEE, 1991. Vol. 1: (199-204). 

Abstract: Investigates the use of resource-bounded sensing to increase the 
performance of telerobotic systems. By examining the role of sensing in 
telerobotics, the authors isolate several desirable sensing functipns to be 
performed. They then review the state of the art in sensor data fusion and 
point out some of the limitations of the current technology, particularly 
regarding its use in unstructured environments. Methods more suitable 
for unstructured environments require information about the goals of the 
operator. They also describe what information the operator must supply 
and how it may be entered into the system. 

Haimovich, A.M., Yosko, J., Greenberg, R.J., Parisi, M.A., and D. Becker. "Fusion 
of Sensors with Dissimilar Measurement/Tracking Accuracies." IEEE Transactions 
on Aerospace and Electronic Systems. Jan. 1993: (245-9). 

Abstract: The case of data fusion employing sensors dissimilar in their 
measurement/tracking errors is considered. It is shown that the fused 
track performance is similar whether the sensor data are fused at the 
track level or at the measurement level. The case of a cluster of tar­
gets, resolved by one sensor but. not the other, is also considered. Under 
certain conditions the fused track may perform worse t.han the worst of 
the individual sensors. A remedy to this problem is presented through 
modifications of the association algorithm. 
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Harris, C.J. "Distributed Estimation, Inferencing and Multi-sensor Data Fusion for 
Rea.I Time Supervisory Control." Artificial Intelligence in Real-Time Control 1989. 
Proceedings of the [FAG Workshop. 19-21 Sept. 1989: Shenyang, China (19-24). 

Abstract: Fully-autonomous or supervisory-controlled guided vehicles that 
utilize on-board intelligent sensing to determine a vehicle's state, the ex­- ternal world, correlate real time events/objects with mapped knowledge, 
monitor a vehicle's own system health, and compute dynamically its own 
control strategy, require the use of a wide range of sensors and the means 
to fuse or integrate disparate sensor databases when they refer to the same 
object. The author considers a multi-level approach to sensory integration 
for AGVs: level 1 - local positional estimation, level 2 - sensory consensus, 
level 3 - sensor fusion, and level 4 - situation assessment. 

Harris, C.J. and A.B. Read. "Knowledge-based Fuzzy Motion Control of Autonomous 
Vehicles." Artificial Intelligence in Real-Time Control. Proceedings of the IFAC 
Workshop. 21-23 Sept. 1988: Swansea, UK (139-44). 

Abstract: An intelligent, mobile, land-ba.sed autonomous vehicle can be 
modelled as a hierarchy of multi-sensor data fusion, scene recognition, 
path planning, navigation and motion control. This paper is directed 
towards the motion control level in developing rule-based fuzzy logic con­
trollers th.at are self-adaptive to substantial changes in plant parameters 
and to inadequacies in physical modelling. It is shown that a land-based 
vehicle, and its guidance and control, can be modelled as a series of con­
nected, linear, second-order systems for small perturbations in time and 
motion. Such models and associated control laws are inadequate for mo­
tion in unstructured environments or for large, slew, angular movements. 
By utilizing a fuzzy decision/control algorithm through a fuzzy-based pro­
duction system, it is shown that effective real-time lateral motion control 
is achievable for a wide range of plant parameters/models. Computational 
aspects of sample rates, number of operations and storage requirements 
for a reconfigurable rule-based fuzzy logic controller are also considered. 

Hazlett, T.L., Cofer, R.H., and H.K. Brown. "Explanation Mode for Bayesian Auto­
matic Object Recognition." Automatic Object Recognition II. Proceedings of the SPIE 
- The International Society for Optical Engineering. 22-24 April 1992: Orlando, FL. 
SPIE, 1992 (258-268). 

Abstract: Long-standing results show that the paradigm of Bayesian ob­- ject recognition is truly optimal in a minimum probability of error sense. 
To a large degree, the Bayesian paradigm achieves optimality through 
adroit fusion of a wide range of lower informational data sources to give a 
higher quality decision, a very "expert system" -like capability. When var­
ious sources of incoming data are represented by C++ classes, it becomE:_s 
possible to backtrack automatically the Bayesian data fusion process, as­
signing relative weights to the more significant data and their combina­
tions. A C++ object oriented engine is then able to synthesize "English"­
like textual description of the Bayesian reasoning suitable for generalized 
presentation. Key concepts and examples are based on an actual object 
recognition problem. 
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Hoballah, LY. and P.K. Varshney. "Distributed Bayesian Signal Detection." IEEE 
Transactions on Information Theory. Sept. 1989: (995-1000). 

Abstract: The signal detection problem is considered for a case in which 
distributed sensors are used and a global decision is desired. Local deci­
sions from the sensors are fed to a data fusion center, which yields a global 
decision based on a fusion rule. A Bayesian formulation of the problem 
is considered, and a person-by-person optimization of the overall system 
is carried out. The special case of identical detectors with independent 
observations is considered, as well. An illustrative example is presented. 

Hughes, T.J. "Sensor Fusion in a Military Avionics Environment." Measurement and 
Control. Sept. 1989: (203-205). 

Abstract: The Tactical Decision Aid is an aid to pilots under attack by 
surface-to-air missiles. It handles certain decisions and leaves others to 
the pilot. It is programmed with specific pre-mission intelligence and must 
perform sensor data fusion, threat assessment and planning. The article 
concentrates on the data fusion function. The system must identify threats 
where possible and distinguish them from non-threatening objects. Un­
certainty, resulting from incomplete knowledge and imprecision and incon­
sistency of data must be taken into account. Data association, correlation 
and combination are performed. Dempster-Shafer theory is found to be 
the most appropriate method for updating an object's position. 

Jewitt, T.W. "Data Fusion of Outputs Provided by a Distributed Field of Passive 
Sensors.'r Proceedings of the SPIE- The International Society for Optical Engineering. 
20-22 April 1992: Orlando, FL (348-59). 

Abstract: A clustering algorithm for this purpose exploits the tendency 
of spatial clusters, corresponding to targets, to be formed by the set of all 
possible localizations computed by triangulation of sensor detections taken 
two at a time. The algorithm incorporates both a priori and a posteriori 
information relevant to the task, but differs from the Bayesian approach 
in being well suited to mapping to an MIMD processing architecture. A 
simulation system is described, and its results are summarized. 

Kessaci, A., Farges, J.L., and J.J. Henry. "On Line Estimation of Turning Move­
ments and Saturation Flows in PRODYN." Control, Computers, Communications in 
Transportation. Papers from the IFAC/IFIP/!FORS Symposium. 19-21 Sept. 1989: 
Paris, France. IFAC. 1990 (191-7). 

Abstract: PRODYN is the French real-time traffic control algorithm de­
veloped by CERT and assessed through ZELT experimental field tests 
in Toulouse. It is based on dynamic programming sub-system optimiza­
tion and decentralized coordination. The real-time optimization is imple­
mented on a rolling horizon and state variables, like queues, are estimated 
by Bayesian techniques. As PRODYN still requires manual introduction 
of traffic parameters, like turning movement ratios (TMR) and satura­
tion flow rates (SFR), the authors have developed real-time estimation 
algorithms for those parameters using data from existing magnetic loop 
sensors. Results of the study on :simulation show that the control ef­
ficiency is strongly affected by parameter variations. TMR estimation 
methods based on either the least-square minimization or the Kalman 
filtering technique are presented. 
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Kim, K. "Bayesian Inference Network: Applications to Target Tracking." Proceedings 
of the SPIE - The International Society for Optical Engineering. 20-22 April 1992: 
Orlando, FL. SPIE, Vol. 1698: (360-71 ). 

Abstract: This paper provides a guideline for applying data fusion tech­
niques to a practical problem: the fusion of target identification attribute 
measurements. Formation of a consensus function is presented and fol­
lowed by construction of an hierarchical, probabilistic network for com­
puting a joint probability density. An identification fusion processing 
approach is described and integrated into a generalized track/data asso­
ciation algorithm. 

Kirson, A., Smith, B.C., Boyce, D., and J. Shofer. "The Evolution of ADVANCE." 
VNIS '92. The Third International Conference on Vehicle Navigation & Information 
Systems. IEEE, 1992 (516-23). 

Abstract: ADVANCE is a public/private sector partnership - the first 
of its kind in North America - established to field test many aspects of 
dynamic route guidance. It is being implemented in the Chicago area 
and is sponsored by the Federal Highway Administration and the Illinois 
DOT, among others. Officially launched on July 9, 1991, ADVANCE will 
be implemented in two phases. Phase I will deploy a 20-vehicle test fleet 
equipped with dynamic route guidance systems which will interact with a 
preliminary version of the Traffic Information Center (TIC) through the 
RF infrastructure. Phase I is scheduled to be operational by mid-1993. 
Phase II, expected to start in mid-1993, will deploy up to 5,000 privately­
owned vehicles with dynamic route guidance systems and will continue 
until July 1996. 

Kraiss, K.F. and H. Kuttelwesch. "Identification and Application of Neural Oper­
ator Models in a Car Driving Situation." IJCNN '91 Seattle: International Joint 
Conference on Neural Networks. 8-14 July 1991: Seattle, WA. Vol. 2: (917). 

Abstract: Summary form only. The authors investigated whether neural 
networks are applicable as operator models in man-machine systems. A 
two-lane, car- driving task was used as an experimental paradigm. Various 
network architectures were tested. In particular, a combination of func­
tional link and back propagation is proposed as a novel, rapidly-trainable 
structure. It is shown experimentally that individual human driving char­
acteristics are identifiable from the input/output relations of the trained 
networks. The authors conclude that neural nets are candidates for op­
erator models. The applicability of such models to serve as information 
sources for driver assistant systems is demonstrated. 

Leardi, C., Murino, V., and C.S. Regazzoni. "Scene Interpretation by Perceptual 
Goals Integration." Proceedings of the IASTED International Symposium Artificial 
Intelligence Application and Neural Networks - AINN '90. 25-27 June 1990: Zurich, 
Switzerland ( 133-6). 

Abstract: A distributed blackboard system (DOORS: Distributed Ob­
ject Oriented Multi-sensor Recognition System) has been developed to 
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integrate information provided by multiple sensors (e.g. RGB camera, 
infrared camera, etc.). Hierarchical frame networks are used as a com­
mon representation format for multi-level data fusion purposes. DOORS 
is composed of a set of modules, with each containing procedural knowl­
edge to build up scene interpretation at a specific level of abstraction. 
Rough sensor data are transformed into symbolic representations (e.g. 
fused data) by local fusion processes, which integrate multi- sensor obser­
vations. In the current application, an autonomous vehicle is considered, 
and a terrain map of the environment mission is made available. The 
interpretation process is performed by considering outdoor natural scenes 
of the test bed environment. · 

Lee, R.H. and R. Leahy. "Segmentation of Multi-sensor Images." Sixth Multidimen­
sional Signal Processing Workshop. 6-8 Sept. 1989: Pacific Grove, CA. IEEE, 1989, 
(23). 

Abstract: Summary form only. Regions of the images observed by each 
sensor are modeled as noncausal Gaussian Markov random fields (GM­
RFs ), and labeled images are assumed to follow a Gibbs distribution. 
The region labeling algorithms then become functions of model parame­
ters, and the multi-sensor image segmentation problems become inferern;:e 
problems, given multi-sensor parameter measurements and local spatial 
interaction evidence. Two different multi-sensor image segmentation al­
gorithms - maximum a posteriori (MAP) estimation and the Dempster­
Shafer evidential reasoning technique - have been developed and evalu­
ated. The Bayesian MAP approach uses an independent opinion pool for 
data fusion and a deterministic relaxation to obtain the map solution. The 
Dempster-Shafer approach uses Dempster's rule of combination for data 
fusion, belief intervals and ignorance to represent confidence of labeling, 
and a deterministic relaxation scheme that updates the belief intervals. 
Simulations with mosaic images of real textures and with anatomical mag­
netic resonance images have been carried out. 

Leung, D.S.P. and D.S. Williams. "A Multiple Hypothesis Based Multiple Sensor 
Spatial Data Fusion Algorithm." Automatic Object Recognition. Proceedings of the 
SPIE - The International Society for Optical Engineering. 3-5 April 1991: Orlando, 
FL. SPIE, 1991. Vol. 1471: (314-325). 

Abstract: An algorithm for correlating all tracks from different sensors 
on the basis of their spatial characteristics is presented. The technique 
is an extension of the multiple hypothesis technique for tracking multi­
ple targets using a single sensor in a cluttered environment: all feasible 
correlation hypotheses are considered and maintained for at least a short 
period. The likelihood for these hypotheses to be correct is evaluated 
and updated with the arrival of new data. The unlikely hypotheses are 
discarded periodically, and the most highly probable hypotheses are re­
tained. Using Kalman filtering techniques, the state estimates of each of 
the fusion hypotheses that survive will have a smaller error covariance 
than any of the tracks from which it was derived. · 

Lin, C.F., Yang, C., Cloutier, J, Evers, J.H., and R. Zachery. "Fusion of Hybrid 
Data in Mode Estimation." Proceedings of the 30th IEEE Conference on Decision 
and Control. 11-13 Dec. 1991: Brighton, UK. IEEE, 1991. Vol. 3: (3072-81). 
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Abstract: The adaptive management of a multi-sensor system is indispens­

-

-
-

-

able for ensuring the synergistic use of multiple sensors to improve system 
performance. Two aspects of a multi-sensor system are addressed. First, 
the problem of adaptive management of multiple sensors as a function of 
environmental and operational conditions is considered. Second, an inves­
tigation of various fusion schemes at different levels is performed by con­
sidering the use of hybrid measurements which are typically continuous­
valued and discrete-valued. The hybrid-measurement-based estimation of 
the jump mode, which suitably describes environmental and operational 
condition changes, is illustrated through simulation. It is concluded that 
the improved mode estimation can be used by a multi-sensor adaptive 
management system for environmental adaptation. 

Linn, R.J. and D.L. Hall. "A Survey of Multi-sensor Data Fusion Systems." Proceed­
ings of the SPIE - The International Society for Optical Engineering. 1-2 April 1991: 
Orlando, FL. SPIE, 1991. Vol. 1470: (13-29). . 

Abstract: Multi-sensor data fusion is the integration of data from multiple 
sensors to perform inferences which are more accurate and specific than 
that available by processing single-sensor data. Levels of inference range 
from target detection and identification to higher-level situation assess­
ment and threat assessment. In recent years, data fusion systems have 
been developed for a variety of applications including IFFN, C/sup3/I, 
tactical resource management, and strategic warning, as well as non­
military applications. This paper provides a survey of more than fifty 
data fusion systems and summarizes their application, development envi­
ronment, system status, and indicates key techniques utilized. The tech­
niques are mapped to a taxonomy previously developed by Hall and Linn 
(1990). These techniques include positional fusion techniques, such as 
association and estimation, and identity fusion methods, including statis­
tical methods, nonparametric methods, and cognitive based techniques. 
An assessment of the state of fusion system development is provided. 

Liu, L.J., Gu, Y.G., and J.Y. Yang. "Inference for Data Fusion." Neural and Stochas­
tic Methods in Image and Signal Processing. Proceedings of the SPIE - The Interna­
tional Society for Optical Engineering. 20-23 July 1992: San Diego, CA. SPIE, 1992 
(670-677). 

Abstract: Data fusion has been widely used in various fields of automa­
tion. The authors describe a multi-sensor integration system: a range and 
intensity image processing system, which can be used for object recogni­
tion and classification. In data fusion processing, a new method called the 
generalized evidence inference method is used by the system. The method 
presented here unifies both Bayesian theory and Dempster-Shafer's evi­
dential reasoning (DSER) for the combination of information from di­
versified sources and overcomes the disadvantages of both approaches. 
The authors adopt the following three approaches: Bayesian theory, the 
DSER, and a unified approach to fuse the reports in the system for object 
recognition and classification. Results are compared and analyzed. 

Llinas, .J. and R.T. Antony. "Blackboard Concepts for Data Fusion Applications." 
International Journal of Pattern Recognition and Artificial Intelligence. April 1993 
(285-308). 
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Abstract: While the specific definitions of a "situation assessment" (SA) 
and a "threat assessment" (TA) have proven to be problem-dependent 
for most defense applications, these notions generally encompass a large 
quantity of knowledge which reflect the dynamic constituency-dependency 
-relationships among objects of various classes, as well as events and ac­
tivities of interest. This paper expands on the processes and techniques 
involved in SA and TA analysis and describes, from various points of view, 
why the blackboard paradigm is properly applicable to problems of SA 
and TA analysis. This assessment identifies various tradeoff factors in 
applying blackboard concepts to data fusion-related reasoning processes. 
Specific research and development by the authors and synthesis of the 
results of a survey on data fusion applications has led to the formulation 
of a recommended generic, ideal blackboard architecture for the defense 
problems described in the paper. · 

Lure, Y.M.F., Grody, N.C., Chiou, Y.S.P., and H.Y.M. Yeh. "Data Fusion with 
Artificial Neural Networks for Classification of Earth Surface from Microwave Satellite 
Measurements." Telematics and Informatics. Summer 1993: (199~208). 

Abstract: A data fusion system employing artificial neural networks is 
used for fast and· accurate classification of five Earth surface conditions 
and surface changes based on seven Special Sensor Microwave Imager 
(SSMI) multichannel microwave satellite measurements. The measure­
ments include brightness temperatures at 19, 22, 37, and 85 GHz at both 
horizontal and vertical polarizations ( only vertical at 22 GHz). The seven 
channel measurements are processed through a convolution computation 
such that all measurements are located at same grid. Five surface classes 
including non-scattering surface, precipitation over land, over ocean, snow, 
and desert are identified from ground-truth observations. The system 
processes sensory data in three consecutive phases: (a) preprocessing to 
extract feature vectors and enhance separability among detected classes; 
(b) preliminary classification of Earth surface patterns using two sepa­
rate and parallel-acting classifiers: back-propagation neural network and 
binary decision tree classifiers; and ( c) data fusion of r~sults from prelimi­
nary classifiers to obtain the optimal performance in overall classification. 
Both the binary decision tree classifier and the fusion processing centers 
are implemented by neural network architectures. The fusion system con­
figuration is an hierarchical, neural network architecture in which each 
functional neural net handles different processing phases in a pipe-lined 
fashion. 

Maitre, B. and H. Laasri. "Cooperating Expert Problem-solving in Blackboard Sys­
tems: ATOME Case Study." Decentralized A.I. Proceedings of the First European 
Workshop on Modelling Autonomous Agents in a Multi-Agent World. 16-18 Aug. 
1989: Cambridge, UK. North-Holland: Amsterdam, Netherlands, 1990 (251-63). 

Abstract: Blackboard systems are a kind of medium-gained, multi-agent 
system that deals with multiple cooperating sources of knowledge. They 
have been successfully used in a variety of applications, including speech 
recognition, computer vision, data fusion, situation assessment, etc. Many 
people in the AI community regard them as the most promising scheme 
for the next generation of knowledge-based systems. The blackboard sys­
tems developed by AI researchers fall somewhere in the range between 
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being purely efficient and purely flexible. At the purely efficient end are 
systems in which a scheduler follows a rigorous procedure, scheduling a 
planned sequence of knowledge sources' activities that monotonically as­
semble compatible solution elements. At tlie purely flexible end are sys­
tems in which a scheduler applies many conflicting heuristics that are 
extremely sensitive to unanticipated problem-solving states, scheduling 
activities that assemble elements out of which a complete solution only 
gradually emerges. ';['he system employed by the authors falls between 
these extremes. In order to reconcile efficiency and flexibility, the authors 
propose a meta-level architecture which balances both of these conflict­
ing behaviors by organizing knowledge in an hierarchical manner and by 
managing them through use of a hybrid multistage controller. 

Mammano, F.J. and R. Sumner; "Pathfinder Status and Implementation Experi­
ence." VNIS '91. Vehicle Navigation and Information Systems Conference Proceed­
ings. 20-23 Oct. 1991: Dearborn, MI. Vol. 1: (407-13). 

Abstract: An overview is presented of the Pathfinder system, which has 
been installed in Los Angeles, California. The Pathfinder system delivers 
roadway congestion messages to drivers. These messages are either speech 
or text. The driver can switch between these at any time by using buttons 
on the Etak monitor. The manner in which the messages are generated 
is discussed along with speech production, communication testing and 
display mounting. 

Mammano, F. and R. Sumner. "Pathfinder System Design." VNIS '89. Conference 
of the First Vehicle Navigation & Information Systems. 11-13 Sept. 1989: Toronto, 
Canada ( 484-8). 

Abstract: The authors describe an experimental project designed to test 
the feasibility of using the latest technological devices to aid motorists in 
avoiding urban traffic congestion. The basic objectives are to design, in­
stall, and operate a system that will provide real-time information to mo­
torists in their vehicles; to evaluate drivers' responses to the information 
provided; to evaluate the utility of using vehicles as a source of information 
on traffic conditions; and to evaluate a computer-assisted method of com­
bining real-time traffic information from various sources. The experiment 
is taking place in the Smart Corridor, a 13-mile (20 km) stretch of the 
freeway between Santa Monica and downtown Los Angeles. Twenty-five 
vehicles, equipped with an in-vehicle navigation system using a modified 
Etak map display to show traffic congestion information, will be used. 
After a system overview, descriptions are given of the vehicle system, the 
central system, and the communication system. Details of the experimen­
tal evaluation are given. 

Martinez, D., Esteve, D., and H. Demmou. "Evaluation of a Modular Multilayer 
Architecture for Recognizing Dangerous Situations in Car Driving." Neuro-Nimes 
'90. Third International Workshop. 12-16 Nov. 1990: Nimes, France (71-80). 

Abstract: This work falls within the framework of the programs Drive and 
Prometheus, whose global aim is the development of a car co-pilot. The 
authors propose a modular neural architecture to recognize dangerous car 
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driving situations in real time. The architecture of the system is built with 
the help of an expert with detailed knowledge of the problem. This makes 
it possible to decompose a task into several independent subtasks and to 
allocate a distinct neural module to learn each subtask. They show that 
the application of this modular approach to recognize dangerous driving 
situations on a motorway improves the system's performance. 

Moutarlier, P. and R. Chatila. "Stochastic Multisensory Data Fusion for Mobile 
Robot Location and Environment Modelling." Robotics Research: Fifth International 
Symposium. 28-31 Aug. 1989: Tokyo, Japan. MIT Press, 1990 (85-94). 

Abstract: Presents a rigoro~s, formal approach to deal with stochastic 
sensory data fusion and develops it in the context of environment map­
making and robot location from noisy data. The approach relies first on 
using a unique reference frame wherein all object frames (and the robot) 
are known. The authors demonstrate, however, that local relationships 
are preserved. A formalism for manipulating uncertain data (related -to 
Kalman filtering but taking into account spatio-temporal correlations) 
is developed. It is applied to the problem of incremental map-making 
after the introduction of a general definition of sensor observations. Non­
linearities are addressed, as well as· biases due to linearization, that could 
contaminate the model. 

Niehaus, A. and R.F. Stengel. "Probability-based Decision Making for Automated 
Highway Driving." VNIS '91. Vehicle Navigation & Information Systems Conference 
Proceedings. 20-23 Oct. 1991: Dearborn, MI. Soc. Automotive Eng.: Warrendale, 
PA, 1991. Vol. 2: (1125-36). 

Abstract: Real-time, rule-based guidance systems for autonomous vehicles 
on limited-access highways are investigated. The goal of these systems is 
to plan trajectories that are safe while satisfying drivers' requests based 
on stochastic information about the vehicle state and the surrounding 
traffic. A rule-based system is used for high-level planning. Given a 
stochastic model of the traffic situation driven by current measurements, 
the probable evolution of traffic and the best trajectory to follow are 
predicted. Simulation results assess the impact of uncertain knowledge 
about traffic on the performance of the guidance system, showing that 
uncertainty can and must be taken into account. 

Nijhuis, J., Hofllinger, B., Neussber, S., and A. Siggelkow. "A VLSI Implementation 
of a Neural Car Collision Avoidance Controller." I.JCNN '91 Seattle: International 
Joint Conference on Neural Networks. 8-14 July 1991: Seattle, WA. Vol 1: (493-9). 

Abstract: The authors present a neural solution to the car collision avoid­
ance problem. The complete path design from problem identification to 
hardware implementation is discussed. It is shown that a thorough study 
of the control task leads to a well-chosen representation for the environ­
ment data (network input) and the control directives (network output) 
so that car dynamics are handled and the learning and generalization ca­
pabilities of the neural network are fully exploited. The selection of a 
suitable network topology for the control problem is presented. The au­
thors discuss the learning strategy and the construction of the learning 
set. After a functioning controller is considered, they discuss the mapping 
of the simulated network on a VLSI layout. 
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Payne, T. "Central Fusion of Sensor Information Using Reasoned Feedback." Complex 
Systems: From Biology to Computation. IOS Press: Amsterdam, Netherlands, 1993 
(248-59). 

Abstract: A consistent approach is presented for the fusion of multi-sensor 
information. The fusion process allows for different sensors which can be 
located at different sites and have little to no overlap in their coverage. 
The information from each sensor is processed locally to remove noise and 
generate hypotheses about objects in its field of view. These hypotheses 
are transmitted to a central location where they are fused using Shafer­
Dempster reasoning. The reasoned conclusion of this data fusion is fed 
back to the local processor at each sensor to improve future hypothesis 
generation. Although this approach is applicable to almost any type of 
sensor system, to maintain· clarity the examples presented assume that 
visual system, like IR arrays or television sensors, are being used. 

Puente, E.A., Moreno, L., Salichs, M.A., and D. Gachet. "Analysis of Data Fusion 
Methods in Certainty Grids: Application to Collision Danger Monitoring." Proceed­
ings !ECON '91. 1991 International Conference on Industrial Electronics, Control 
and Instrumentation. 28 Oct.-1 Nov. 1991: Kobe, Japan. IEEE, 1991. Vol. 2: 
(1133-7). 

Abstract: The authors focus on the use of occupancy grid representation 
to maintain and combine the information acquired from sensors about 
the environment. This information is subsequently used to monitor robot 
collision danger risk and take that risk into account to initiate the ap­
propriate response maneuver. The occupancy grid representation uses a 
multidimensional tessellation of space into cells, where each cell stores 
some information about its state. A general model associates a random 
vector that encodes multiple properties in a cell state. If the cell property 
is limited to occupancy, it is usually called occupancy grid. Two main 
approaches have been used to model the occupancy of a cell: probabilistic 
estimation and the Dempster-Shafer theory of evidence. Probabilistic esti­
mation and some combination rules based on the Dempster-Shafer theory 
of evidence are analyzed and their possibilities compared. 

Rillings, J.H. and J.W. Lewis. "TravTek." VNIS '91. Vehicle Navigation and Infor­
mation Systems Conference Proceedings. 20-23 Oct. 1991: Dearborn, MI. Vol. 2: 
(729-37). 

Abstract: A description is given of TravTek, a joint public-private sector 
project intended to develop, test, and evaluate an integrated advanced 
driver information system and supporting infrastructure. TravTek will 
provide drivers of 100 specially-equipped 1992 Oldsmobile Toma.dos with 
navigation, real-time traffic information, route guidance, and motorist 
information services. The system begins operation in Orlando, Florida, 
in January 1992. 

Sarma, V.S. and S. Raju. "Multisensor Data Fusion and Decision Support for Air­
borne Target Identification." IEEE Transactions on Systems, Man and Cybernetics. 
Sept.-Oct. 1991: (1224-30). 
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Abstract: A knowledge-based approach and a reasoning system for multi­
sensor data fusion is presented. The scenario for the study is an air-land 
battlefield situation. A data fusion system obtains data from a variety of 
sensors. A Dempster-Shafer approach for representing and combining data 
is found appropriate for combining uncertain information from disparate 
sensor sources at different levels of abstraction. Evidential reasoning al­
lows confidence levels to be assigned to sets of propositions rather than 
just N mutually exclusive propositions. The software has been developed 
and tested in the LISP language. The results illustrate the advantages of 
using multiple sensors in terms of increased detection probability, greater 
spatial and temporal coverage, and heightened reliability. 

Schlachta, H.B. and Studenny, J. "Interoperability Versus Integration of Omega and 
GPS." Journal of Navigation, May 1990 (229-237). 

Abstract: The integration of Omega and GPS sensors into a single nav­
igational system offers the advantages of good accuracy under almost all 
signal conditions, low capital investment, and certifiable worldwide nav­
igation. The accuracy of the existing Omega network can be improved 
progressively as GPS satellite coverage is fully implemented. Eventu­
ally, the same equipment can provide full GPS navigation accuracy with 
Omega as a back-up. This paper proposes a method of further improving 
the overall accuracy and reliability of Ornega-GPS navigation. The con­
cepts of Omega-GPS integration, interoperability, modes of operation, and 
Kalman filter data fusion are presented. Four interoperability modes of 
operation and their ability to improve navigation reliability are discussed. 

Sikka, D.I., Varshney, P.K., and V.C. Vannicola. "A Distributed Artificial Intelligence 
Approach to Object Identification and Classification." Proceedings of the SPIE - The 
International Society for Optical Engineering. 28-29 March 1989: Orlando, FL (73~ 
84). 

Abstract: The authors present an application of distributed artificial in­
telligence (DAI) tools to a data fusion and classification problem. Their 
approach is to use a blackboard for information management and hypothe­
ses formulation. The blackboard is used by the knowledge sources (KSs) 
for sharing information and posting hypotheses, just as human experts 
sitting around a table would do. The simulation performs classification of 
an aircraft (AC) - after identifying it by its features - into disjoint sets 
( object classes) comprised of the five commercial A Cs: Boeing 7 4 7, Boeing 
707, DClO, Concord and Boeing 727. A situational database is charac­
terized by experimental data available from the three levels of expert rea­
soning. Ohio State University Electro Science Laboratory provided this 
experimental data. To validate the architecture presented, two KSs for 
modeling the sensors, aspect angle polarization feature, and the ellipticity 
data are employed. The system has been implemented on Symbolics 3645, 
under Genera 7 .1, in Common LISP. 

Stamenkovich, M. "An Application of Artificial Neural Networks for Autonomous 
Ship Navigation Through a Channel." VNIS '91. Vehicle Navigation and Information 
Systems Conference Proceedings. 20-23 Oct. 1991: Dearborn, MI. Vol. 1: (475-81). 
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Abstract: A neural network model based on reinforcement learning is in­
vestigated for use as a shipboard autonomous channel navigator. The 
mode used consists of two, neuron-like elements. The basic learning 
scheme involves learning with a crit.ic. The network consists of an adaptive 
critic clement (ACE) and an adaptive search element (ASE). The ASE ex­
plores t,l1c channel region while the ACE critici;1,es t.lic actions of tl1c ASE 
and tries to predict failures of the ASE's attempt to navigate. The neural 
network model developed has been shown to be useful through software 
simulation with graphical feedback. A similar implementation could have 
applications in many electronic mapping systems utilizing vector infor­
mation. The performance of such a system is investigated, along with its 
adaptability to new channels. 

Sumner, R. "Data Fusion in Pathfinder and TravTek." VNIS '91. Vehicle Navigation 
and Information Systems Conference Proceedings. 20-23 Oct. 1991: Dearborn, MI. 
Soc. Automotive Eng.: Warrendale, PA, 1991. Vol. 1: (71-5). 

Abstract: A description is presented of the data fusion process and the 
manner in which it is applied in the Pathfinder and TravTek projects. In 
the TravTek system, travel times are transmitted to all vehicles. In the 
Pathfinder system, congestion levels are transmitted to all vehicles. These 
transmissions are broadcast once per minute. The data sources for these 
two Intelligent Transportation Systems (ITS) are described. 

Zadeh, L.A. "Fuzzy Sets." Inform. Control. 1965: (338-53). 

Abstract: The authors describe an algorithm for implementing a multi­
sensor system in a model-based environment with consideration of the 
constraints. Based on an environment model, geometric features and con­
straints are generated from a CAD model database. Sensor models are 
used to predict sensor response to certain features and to interpret raw 
sensor data. A constrained MMS (minimum mean squared) estimator 
is used to recursively predict, match, and update feature location. The 
effects of applying various constraints in· estimation are shown by a sim­
ulation system mounted on a robot arm for localization of known object 
features. 

Zhu, Q., Huang, Y., and M. Payne. "An Expanded Dempster-Shafer Reasoning Tech­
nique for Image Feature Integration and Object Recognition." Neural and Stochastic 
Methods in Image and Signal Processing. Proceedings of the SPIE - The International 
Society for Optical Engineering. 20-23 July 1992: San Diego, CA. SPIE, 1992 (36-47). 

Abstract: Fusion of information from multiple sources has been one of the 
key steps to the success of general vision systems. It is also a problem 
for the development of color image understanding algorithms that make 
full use of the multichannel color data for object. recognition. The authors 
present a feature integration system charactcri:r.e<l by a hybrid combina­
tion of a statistic-based reasoning technique and a symbolic logic-based 
inference method. A competitive evidence enhancement scheme is used 
in the process to fuse information from multiple sources. The scheme 
expands Dempster-Shafer's function of combination and improves the re­
liability of object recognition. When applied to integration of object fea­
tures extracted from the multiple spectra of the color images, the system 
alleviates the drawback of the traditional Bayesian classification system. 
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Zhu, Q. and E.S. Lee. "Dempster-Sha.fer Approach in Propositional Logic." Interna-
tional Journal of Intelligent Systems. March 1993 (341-9). · 

A bstra.ct: A general framework .of uncertainty reasoning based on Dempster­
Shafer's theory is proposed in the context of logic calculus. Under this 
framework, any inference can be ,conducted without much computational 
complexity. Furthermore, it avoids the problems of considering conflict­
ing information and a common universe when two pieces of evidence a.re 
combined. 
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	Executive Summary 
	Executive Summary 
	The ATIS/ATMS Regional ITS Demonstration project report consists of three main parts: (1) an extensive, state-of-the-art literature review of data fusion technologies, 
	(2) a detailed description of a current data amalgamation (fusion) project based at 
	the University of Washington, and (3) the presentation of a new quantitative data fusion algorithm to estimate speed from volume and occupancy measurements. Data fusion technologies are categorized according to the level of detailed inference and user recommendations they provide from various data inputs. Five general methods of data fusion are discussed, with examples of specific fusion techniques; applications for those techniques are cited, and special attention is given to their implementation in ITS pr
	The architecture of the data fusion system based at the University of Washington consists of four major components. These components are partitioned among various 
	computers that are located at different sites and connected by a local area network and Tl lines. Within these computers exist dedicated servers that handle specific processes. The TMSUW server collects loop data from the RTDB main memory and then broadcasts them over a local area network. The loop rebroadcast server collects the broadcast data and retransmits them over a Tl line. The loop repeater server, located at the University of Washington, receives each data packet sent over the Tl link. This arrange
	V 
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	This project has accomplished three significant tasks. First, a state-of-the-art lit­erature review has provided an organizational framework for categorizing the various data fusion projects that have been conducted to date. A popular typology was dis­cussed that situates data fusion technologies in one of three levels, depending on the degree to which sensor data are correlated to provide users with meaningful transit recommendations. The trade-offs that accompany higher-level data fusion efforts -in terms
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	1. INTRODUCTION 
	1. INTRODUCTION 
	1. INTRODUCTION 
	This report on the ATIS/ATMS Regional ITS Demonstration project consists of three main parts: (1) an extensive state-of-the-art literature review of data fusion technolo­gies, (2) a detailed description of a current data amalgamation (fusion) project based at the University of Washington, and (3) the presentation of a new quantitative data fusion algorithm to estimate speed from volume and occupancy measurements. Data fusion technologies are categorized according to the level of detailed inference and user 


	2. BACKGROUND AND STATE-OF-THE-ART REVIEW 
	2. BACKGROUND AND STATE-OF-THE-ART REVIEW 
	As its name implies, multi-sensor data fusion is a technique by which data from several sensors are combined through a centralized data processor to provide com­prehensive and accurate information. Although the provision of a single data stream from multiple inputs is advantageous, the powerful potential of this technology stems from its ability to track changing conditions and anticipate impacts more consistently than could traditionally be done with a single data source -even a highly reliable one. Thus, 
	Data fusion technology is still in its infancy, having undergone rapid growth that started in the late 1980s and has continued to the present. The U.S. Department of Defense conducted much of the early research on this technology and explored its usefulness in military surveillance and land-based battle management systems. The application of data fusion technology to commercial endeavors (e.g., robotics and general image processing) and non-military government projects (e.g., weather surveillance and NASA m
	Current multi-sensor data fusion projects are testing the ability ~f the technology 
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	to deliver information that provides the following (Sarma & Raju, 1991; Lin et al., 1991 ): 
	• 
	• 
	• 
	Increased confidence: more than one sensor can confirm the same target 

	• 
	• 
	Reduced ambiguity: joint information from multiple sensors reduces the set of hypotheses about the target 

	• 
	• 
	Improved detection: integration of multiple measurements of the same target improves signal-to-noise ratio, which increases the assurance of detection 

	• 
	• 
	Increased robustness: one sensor can contribute information where others are unavailable, inoperative, or ineffective 

	• 
	• 
	Enhanced spatial and temporal coverage: one sensor can work when or where another sensor cannot 

	• 
	• 
	Decreased costs: a suite of "average" sensors can achieve the same level of performance as a single, highly-reliable sensor and at a significantly lower cost. 


	Several data fusion algorithms have been developed and applied, individually and in combination, providing users with various levels of informational detail. In re­viewing this emerging technology, the U.S. Defense Department's Joint Directorate of Laboratories Data Fusion Subpanel has developed three basic categories -or levels -of data fusion (Linn & Hall, 1991). These fusion levels are differentiated according to the amount of information they provide. The most basic level involves the fusion of multi-se
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	According to Linn and Hall's 1991 taxonomy of data fusion algorithms, five gen­eral, goal-oriented, data fusion methods are in use today: data association, positional estimation, identity fusion, pattern recognition, and artificial intelligence (Linn & Hall, 1991 ). Within these five general categories, ten discrete data fusion techniques can be identified (see Table 2.1). 
	According to Linn and Hall's 1991 taxonomy of data fusion algorithms, five gen­eral, goal-oriented, data fusion methods are in use today: data association, positional estimation, identity fusion, pattern recognition, and artificial intelligence (Linn & Hall, 1991 ). Within these five general categories, ten discrete data fusion techniques can be identified (see Table 2.1). 
	Fusion Level 
	Fusion Level 
	Fusion Level 
	Fusion Level 
	Fusion Level 
	Fusion Level 
	General Method 
	Specific Technique 

	Level one 
	Level one 
	Data association 
	Figure of merit (FOM) 

	TR
	Gating techniques 

	TR
	Positional estimation 
	Kalman filters 

	Level two 
	Level two 
	Identity fusion 
	Bayesian decision theory 

	TR
	Dempster-Schafer evidential reasoning 

	TR
	(DSER) 

	TR
	Pattern recognition 
	Adaptive neural networks 

	TR
	Cluster methods 

	Level three 
	Level three 
	Artificial intelligence 
	Expert systems 

	TR
	Blackboard architecture 

	TR
	Fuzzy logic 





	T a bl e 2 1 .. C ommon dta fa us1on · thec · mques 
	The purpose of" this state-of-the-art review is to provide a synopsis of the most predominant of these techniques. In the discussion that follows, these techniques are grouped by fusion level, differentiating them according to the nature of the infor­mation they provide. After each technique is introduced, its major applications are presented. Particular attention is given to cases that illustrate ITS or transportation applications. Figure 1 provides a frequency distribution of the general methods used in a
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	Figure 2.1: Frequency distribution of the general meth­ods used in U.S. military data fusion projects (Linn and Hall, 1991). 
	first to specifically examine data fusion technology with an eye to its application in Intelligent Transportation Systems. 
	2.1. LEVEL ONE FUSION 
	2.1.1. Data Association 
	The first general method of combining multi-sensor data, known as data. association, correlates one set of sensor observations with another set of observations. As a. result of this process, data association is able to produce a set of "tracks" for a target object. A track is an estimate of a target's kinematics, including such factors as its position, velocity, and rate of acceleration (Hughes,. 1989). Thus, data association represents the initial step necessary for localizing a target; this can later be e
	A fundamental challenge with data association is the task of deciding which obser­vations should be combined into track estimates. Several methods have been devised to decrease the error probability of track estimation by eliminating data outliers, which are data observations that lie outside a specified confidence interval, typically 
	0.95 or 0.99. Two common techniques used to eliminate outliers are establishing a figure of merit (FOM) and gating. Both of these techniques work by selecting only those data observations that lie within a predetermined error threshold. One way to measure the distance between an established track for a target and a single ob­servation in question is the Mahalanobis distance. This is the measured distance normalized by measurement and track error variances (Collins & Uhlmann, 1992). 
	In an in-depth state-of-the-art review of data association techniques employed in the aerospace industry, Blackman and Broida (1990) claimed that many of the issues encountered in aerospace applications are not unique to that field but are evident in other engineering domains, as well -including ITS. For more information on the leading techniques of data association developed in the past decade, see also Bar­Shalom and Fortmann (1987). 

	2.1.2. Positional Estimation: Kalman Filters 
	2.1.2. Positional Estimation: Kalman Filters 
	First reported in the ASME's Journal of Basic Engineering by R.E. Kalman (1960), this positional estimation algorithm has been widely used for a variety of optimiza­tion tasks. Transportation systems employing Kalman filtering use discrete-time al­gorithms to remove noise from sensor sign_als in order to better determine the present and future positions of a target (Bozic, 1979). Kalman filtering produces fused data that estimate the smoothed values of posi­tion, velocity, and acceleration at a series of po
	motion characteristics are also integral to the Kalman filter algorithm. For example, Kim (1992) estimated target attributes by using Bayes' rule while making position estimates with Kalman filters. After each sensor observation is taken at a specified time interval, these observations are weighted according to their known accuracy level (Schlachta & Studenny, 1990). These weights are often inversely proportional to the variance of each sensor's response. Other approaches for dealing with dissimilarity in s
	Kalman Filter Operation current fe.'lp<>nses current estimates r(k + H(k)'i(k/k-1) K(k) Kalman gain ---...-----.... A X(k/k-1) Delay ----.---Pfl<Vious A esumate X(k-1/k-l) °2(k) anticipated observation anticipiited state transition responses matrix state estimate matrix State Estimate Update: A A K * x(k/k) = x(k/k-1) + current anticipated + Kalman • current re.~onse minus estimate estimate gain anticipated response 
	Figure 2.2: Calculations involved in a Kalman filter (Ba­howick, 1990). 
	Figure 2.2: Calculations involved in a Kalman filter (Ba­howick, 1990). 
	Like the Bayesian method, the Kalman filter algorithm can demand complex com­putations. Figure 2.2 shows the many calculations involved with a Kalman filter operation. This process is in many ways analogous to computing the half-life of a radioactive element (Bahowick, 1990). 
	Easthope et al. (1989) attempted to deal with the computational complexities of real-time Kalman filter design by introducing an object-oriented approach. Object­oriented programming can save much time in system development by compiling a library of modular, adaptive mini-programs. 
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	2.1.3. Kalman Filters Applications 
	Little rc~scarc.h ha.s been reported in tlw United St.ates on I.he specific application of Kalman filtering techniques to Intelligent Transportation Systems or to transportation systems in general. However, Kessaci et al. (1989) have used Kalman filters in Europe to estimate traffic-turning movement ratios based on data from magnetic loop sensors. Their work was performed on a project called PRODYN, a real-time, traffic-control algorithm tested in Toulouse, France. Kessaci et al. found that their Kalman fil
	In Germany, Behringer et al. (1992) tested Kalman filters to construct four­dimcnsional, position estimates for an autonomous driving system deployed on public roads in actual traffic situations. The computer architecture for the PROMETHEUS system, as it was called, consisted of modular clusters of 23 transputers that per­formed image analysis, feature extraction, object modeling, sensor data integration, and vehicle control. Researchers concluded that PROMETHEUS was able to success­fully interpret roadway 
	Other transportation-related research has been reported by Schlachta and Stu­denny (1990), who used Kalman filters to improve the accuracy and reliability of an Omega-GPS (Global Positioning System) aircraft navigation system deployed in Canada. A global positioning system employs a network of Earth-orbiting satellites to calculate a subject's position and then transmit that information to the subject's GPS receiver; this technology has been widely applied in ITS projects. Though researchers acknowledge, th
	Kalman filtering has been applied mainly in the field of robotics. Wen & Durrant­Whyte (1992) described their efforts to design a filter that is mounted on a robot arm and then used to locate a specific object. They recommended a model-based Kalman filter with previously-built-in constraints to recursively predict, match, and update a target's location. These constraints can be generated from a CAD-model 
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	database. Moutarlier & Chatila (1989) developed a formal approach to incremental, three-dimensional map making and robot location by using a laser range finder and a stereo system. Their system sets up a unique reference frame wherein the location of all object frames and the robot are already known. The filter is able to cope with all kinds of correlations, including spatio-temporal ones. The system also accounts for anticipated filter biases. 
	In the field of general image processing, Durrant-Whyte et al. (1990) illustrated how a Kalman filter algorithm can be implemented to allow several cameras to track, in real time, a small object moving through a room. Their research focused on developing a thoroughly decentralized computer architecture, in hopes of eliminating the problems inherent in a centralized one. The major problem with a centralized communications system -one through which all messages between sensors must pass -is the communications
	Other researchers working on decentralized Kalman filtering as applied to military aircraft navigation claim that the positional error for a centralized architecture can be close to three times greater than that of a decentralized system (Broatch & Henley, 1991). The top diagram of Figure 2.3 depicts a centralized architecture, and the bottom diagram depicts a decentralized one. 



	2.2. LEVEL TWO FUSION 
	2.2. LEVEL TWO FUSION 
	2.2.1. Bayesian Decision Theory 
	2.2.1. Bayesian Decision Theory 
	According to the Joint Directorate of Laboratories Data Fusion Subpanel, level two data fusion represents an advance beyond the creation of raw sensor data, as occurs at the first level, and supports the synth.esis of more meaningful information for guiding human decision-making. Bayesian decision theory is one of the most common techniques employed in level two data fusion. It is used to generate a probabilistic model of uncertain system states by consolidating and interpreting overlapping data 
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	Figure 2.3: Centralized versus decentralized architecture (Belcastro et al., 1991) 
	provided by several sensors. It also determines conditional probabilities from a priori evidence; these revised probabilities are called "a posteriori probabilities." 
	The use of multiple sensors in data fusion projects can produce conflicting data which, in turn, can cause decision problems. Application of the Bayesian theorem in such cases has proven successful in overcoming this challenge. It models the un­known system state by using probabilistic functions to determine an appropriate set of actions (Cameron & Wu, 1991). 
	Without a probabilistic means of fusing data, sensors are only able to relay a binary "yes-no" response calculated on the basis of their owq isolated, internal classi­fication processes. This "yes-no" response can be termed a "hard decision" because it 
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	Sample Uncertain Uncertain ~ Nonlethal Nonlethal Nonlethal 
	reports no level of uncertainty back to the global data fusion center, only a definitive answer. The trouble with this method, according to Fennelly et· al. (1992), is that a great deal of useful information is lost when sensors generate only "yes-no" inputs from collected data ( see Figure 2.4) . 
	Figure 2.4: Decision support and classification model (Fennelly et al., 1992). 
	In addressing this problem, probabilistic data fusion generates what. might be termed "soft decisions." This process provides a greater measure of confidence by· quantifying the uncertainty behind each sensor decision (Buede & Waltz, 1989). The composite evidence is then compared with some predetermined decision threshold level to arrive at a more accurate identification of unknown targets. Figure 2.5 shows the increased confidence level made possible by soft-decision sensors. 
	Several studies bear out the effectiveness of using the Bayesian theorem for identi­fying unknown targets. One study, Fennelly et al. (1992), reported a confidence level of 95 percent for an X-ray explosives-detection system that used _five or six different soft sensors. These sensors, taken individually, averaged only about a 50 percent ef­fective confidence level. The false detection rate for this system was 0.01 percent, and the cost of the system was much less than the price for a single-sensor approach
	HARD DECISION SOFT DECISION P, P, .... Decison --------·--:,..Threshold ~::,. I I • • ---I Combined Probability SI and S2'· '-------,--~RangeR2 R1 Decison Threshold Decison Threshold P, P, No Decision Either Sensor No Decision 
	Figure 2.5: Increased confidence level made possible by soft-decision sensors (Buede & Waltz, 1989). 
	2.2.2. Bayesian Decision Theory Applications 
	Over the years, a substantial body of literature on Bayesian theory applications has been written. It is not too surprising, then, that a large number of data fusion projects use Bayesian uncertainty modeling as a data fusion strategy. Application of the Bayes theorem to the development of intelligent transportation systems, however, is still somewhat novel. An early example is the French PRODYN system, which uses a real-time, urban, traffic-control algorithm (see Section 2.1.2, Kalman Filters) to estimate 
	Niehaus & Stengel (1991) have used probability methods to calculate traffic uncer­tainties for autonomous vehicles operating on limited-access highways. This project 
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	was a recent expansion of their work on the IGHLC (Intelligent Guidance for Head­way and Lane Control) system. IGHLC is a rule-based expert system that effectively models the concepts of worst-case decision-making to make p~ovision for the most dangerous traffic situations, even if those events are not the most likely,to occur. 
	Bayesian theorem implementation in data fusion is limited by this technique's inability to depict the level of uncertainty in a particular sensor state, as well as its inability to ensure consistency in a collection of interrelated propositions (Liu et al., 1992). Other frequently cited drawbacks of a probabilistic-based fusion algorithm are its heavy computer processing and memory requirements (Hoballah & Varshney, 1989). 
	The solution to these problems, according to Liu et al. (1992), is to assume statis­tical independence among each sensor's response and to derive a composite probability using only mathematical approximations. Hoballah and Varshney also recommended that the data from each sensor be treated as if they possessed an identical distribu­tion. Hazlett et al. (1992) suggested using rules of mutual exclusiveness in order to reduce the computational burden; in order to distinguish between data that were either more 
	2.2.3. Dempster-Shafer Evidential Reasoning 
	As stated previously, Bayesian decision theory is limited in its ability to handle un­certainty in sensor data. This can hinder the application of this data fusion technique because sensor data are by nature highly uncertain. Uncertainty can come in many forms, including 
	• 
	• 
	• 
	(1) incompleteness -sensors are likely to leave something out; 

	• 
	• 
	{2) imprecision -sensors may provide only approximations; 

	• 
	• 
	(3) inconsistency -sensor data may not always agree; and 

	• 
	• 
	(4) ambiguity -data streams from various sensors may be indistinguishable from one another (Hughes, 1989). 
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	Dempster-Shafer Evidential Reasoning (DSER) is now being explored as a pro­ductive alternative to Bayesian probability (Payne, 1993) because of its superiority in working with data uncertainty. DSER employs a confidence interval-of-certainty to replace I.he single-point probability of the Baycsiai1 method. Sarrna and Raju (1991) defined DSER as "a generalization of Bayes reasoning that offers a way to combine uncertain information from disparate sensor sources." One major advantage of DSER is that sensor da
	The Dempster-Shafer method has several other advantages over Bayesian decision theory (Hughes, 1989). Most importantly, hypotheses do not have to be mutually exclusive, and the probabilities involved can be either empirical or subjective. Because DSER sensor data can be reported at varying levels of abstraction, a priori knowledge can be presented in varying formats. It is also possible to use any relevant data that may exist, as long as their distribution is parametric. Hughes further claimed that the Demp

	2.2.4. OSER Applications 
	2.2.4. OSER Applications 
	Despite its considerable advantages over the Bayes method, the only references to the application of DSER in transportation systems are those of Harris (1988) and Harris and Read (1989) in their work on autonomous guided vehicles (AGVs). These fully autonomous vehicles utilize on-board intelligent sensors to determine both the state of the vehicle and the outside driving environment. 
	The majority of research involving DSER is connected with general object recog­nition (Zhu et al, 1992; Lui et al., 1992; Lee & Leahy, 1989). Some of this work examined the usefulness of DSER techniques for tracking moving objects, as in the research of Chao (1990), Chao et al. (1990), and Puente et al. (1991). Chao (1990) applied the Dempster-Shafer theory in his development of a knowledge-based, moving­target detector that identifies feature parameters using radar signals. Puente et al. compared the Bayes
	15 
	As one might expect, application of the Dempster-Shafer method demands ex­tensive computational capabilities. In fact, Puente et al. claimed that the computer memory requirements for DSER are double that of the Bayesian single-point prob­ability method. Other shortcomings of the Dempster-Shafer method, according to Zhu & Lee (1993), include the manner in which it handles conflicting information and its reliance on the basic assumption that two pieces of evidence must have the same population universe. 
	£2.5. Neural Networks 
	Neural network technology has had a growing impact in the industrial and military sectors since the 1980s. An artificial neural network can be explained as a web-like, information processing structure that emulates the human brain's own learning and decision-making processes. Like Bayesian or DSER techniques, neural networks pro­duce interpretive findings that incorporate input from various weighted, information sources. One major advantage a neural network decision algorithm has over either Bayesian or DSE
	A neural network uses many simple elements called neurons ( or processing nodes) to collect and correlate information. These neurons are connected by synapses that ascribe a weight to each neuron's output and then forward it, in a unidirectional path, to the next set of neurons. A neuron may have many inputs, but it has only a single output. In summary, the three defining elements of a neural network are the following: 
	• 
	• 
	• 
	The neuron's characteristics -the equations that define what a neuron will do. 

	• 
	• 
	The learning rule -the guide as to how the weights between various neurons will change according to the stimuli they receive. 

	• 
	• 
	The network topology -the manner iu which the neurons are connected. 
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	Neural networks always require a "learning" period in order to fully establish and test the specific patterns or rules that will guide the system. The learning process employed in a typical multi-layer neural network is simple error feedback (Bavarian, 1993). During this process, the network must be run through its paces so that each neuron can be "taught" the proper association between diverse data inputs and assim­ilated output. This knowledge can be obtained through the observations of a human teacher, w
	output processing (nodes) connections and memory (weights) processing (nodes) connections and memory (weights) processing (nodes) input Figure 2.6: Architecture of the original genre of neural network systems (DeClaris, 1992). 
	Figure 2.6 depicts the architecture of the original genre of neural network systems, also known as a perceptron. The multi-layer architecture of the perceptron incorpo­rates four main functions: input/output (data transfer in and out of the computer), processing (executing specific information-handling tasks), memory (storing informa­tion), and the connections between the neurons (providing for information flow and 
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	control). 

	2.2.6. Neural Networks Applications 
	2.2.6. Neural Networks Applications 
	During the past decade, several successful prototypes of neural network systems have been developed and implemented in a wide range of artificial intelligence applications. These have taken on such tasks as the generation of national weather forecasts and stock market predictions. Ford Motors has recently designed a neural network that can read sensor data from automobile engines and determine the probable cause of a malf1111d.ion (Chang, 1992). 
	One common concern being addressed by several ITS projects is the challenge of accurately and quickly detecting traffic incidents. In a research project for the Texas Transportation Institute at Texas A & M, Chang (1992) used a neural network to improve computerized traffic surveillance and automatic incident detection. The sys­tem, called Brainmaker, pattern-matched current traffic situations against historical information, especially during periods of high congestion or major traffic incidents. The author
	One of the more ambitious ITS projects in the U.S. is ADVANCE, an acronym for Advanced Driver and Vehicle Advisory Navigation Concept (Kirson et al., 1992; Boyce et al., 1991). ADVANCE is a driver information system that just finished testing in the suburban Chicago area at the end of 1995. It is the first dynamic route guidance system of its kind in North America and has been sponsored by several public and private agencies, including the Federal Highway Administration (FHWA), the Illinois Department of Tr
	Designers involved with the ADVANCE program have proposed using a neural network along with a knowledge-based expert system (see next section) to perform the necessary artificial intelligence functions (Kirson, 1992). The authors plan to use a KJ3ES for the incident-detection algorithm al)d a neural network to fuse the output. 
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	They explain that a neural network is helpful in solving pattern recognition problems that involve many potential interrelationships that are not easily recognized. 
	Other transportation-related applications include Nijhuis et al. (1991), who em­ployed neural networks in addressing car collision avoidance problems, and Kraiss and Kuttelwesch (1991), who tested and proved that neural networks are applicable as vehicle operator models in a two-lane car-driving task. 
	Neural networks are being applied to many non-ITS projects as well. One such application is in the U.S. Navy for autonomous ship navigation through a channel learning routine of this simple network is termed "learning with a critic." The network consists of only two neurons, one that explores the channel region through which the ship is navigating and another that critiques the actions of the first. System "forgetfulness" may be attributed to the small number of neurons incorporated in this model (Stamenkov
	(Stamenkovich, 1991). The basic 
	" 

	A frequent focus of other non-ITS applications of neural networks is the usefulness of such systems for image processing, including exploration of the Earth's surface from a satellite (Lure et al., 1993); identification of an object based on each neuron's area of expertise regarding texture, motion, or depth (Booth et al., 1991); and image recognition problems in general (Fincher & Mix, 1990). 


	2.3. LEVEL THREE FUSION 
	2.3. LEVEL THREE FUSION 
	2.3.1. Expert Systems 
	The most .commercially successful branch of artificial intelligence is the field of ex­pert systems. Knowledge-based expert systems (KBES) are a branch of artificial intelligence that strives to emulate the behavior of a human expert working within a well-bounded domain of knowledge (Liebowitz, 1988). So expert systems are, by definition, level three fusion techniques because they provide users with higher-level, informed recommendations for guiding human decision-making. 
	Typically, an expert system has three major components: the dialog structure, the inference engine, and the knowledge base. The dialog structure is the interface between the user and the system. These interfaces are designed to verbally explain 
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	their reasoning, much like a human expert. The inference engine "drives" the com­puter to perform search strategies that arrive at various conclusions. The inference engine reasons in one of two ways: by forward chaining (which is driven by the data) or backward chaining ( moving backward from the goal to the steps that need to be taken to accomplish that goal). The third component of an expert system, its knowl­edge base, is the set of facts and rules (heuristics) that guide a specific task at hand. These 
	The true power of an expert system lies in its knowledge base, which also represents its biggest challenge because knowledge engineering is fraught with many difficulties. The first step in developing a knowledge base is to select an appropriate problem to be solved. Liebowitz (1993) offers the following suggestions: 
	• 
	• 
	• 
	Pick a problem that is costing people a fair amount of time and money. 

	• 
	• 
	Select a well-bounded problem whose solution can be encoded in a knowledge representation scheme. 

	• 
	• 
	Select a task that is performed frequently. 

	• 
	• 
	Choose a problem for which a general consensus exists on the proper solution. 

	• 
	• 
	Pick a task that utilizes symbolic knowledge, such as "IF-THEN" rules. 


	The often painstaking process of acquiring knowledge for the expert system task can be simplified if developers choose an application for which a cooperative expert or set of experts exists. Many times, the majority of needed information ha.s already been documented. Liebowitz (1988) cautioned that it is not always easy to find an expert who is articulate and readily available. One final limiting factor to expert system technology that is often overlooked until it is too late is the process of transferring 
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	2.3.2. Expert Systems Applications 
	Expert systems have been applied to a variety of tasks rangmg from sheep repro­duction management in Australia., to boiler plant operation in Japan, to strategic management consulting in Europe (Liebowitz, 1993). Because of the wealth of liter­ature available on this subject, the set of examples provided in this section will be limited to ITS applications or illustrations from the field of transportation. 
	In ADVANCE, the driver information system currently being tested in Chicago (see section 2.2.5, Neural Networks), the developers have been using a KBES for the incident detection algorithm because its rule-based structure enables more di­rect control over system design (Kirson, 1992). Furthermore, the expert system was relatively simple to develop because the required knowledge could be culled from a human expert. Figure 2.7 depicts the high-level architecture of ADVANCE. 
	Figure 2.7: Architecture of ADVANCE (Kirson et al., 1992). 
	As shown, ADVANCE has four major components (Kirson et al., 1992): 
	• Mobile Navigation Assistant (MNA) -determines a vehicle's position, performs route planning, and provides route guidance information to the driver 
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	• 
	• 
	• 
	RF Communications Network (COM) -provides two-way radio communications between the Traffic Information Center and the MNAs in the vehicles 

	• 
	• 
	Traffic Information Center (TIC) -houses the central computer facilities a.nd 


	controls the Traffic Related Functions 
	• Traffic Related Functions (TRF) -comprises the traffic data a.nd analytic func­tions on which ADVANCE is based. 
	The data fusion system,· incorporated in the TRF, correlates traffic probe reports and feedback from street signals with historical transit data to provide travel-time estimates for probe vehicles. Kirson et al. proposed using a knowledge-based expert system as the incident detection algorithm to identify abnormal traffic conditions. The authors explained that the rule-based structure of a KBES would allow developers to exert direct control over system design and to more rapidly validate system results (Kir
	As mentioned in the article "Bayesian Decision Theory," researchers Niehaus and Stengel (1991) designed a real-time expert system that guides autonomous vehicles on limited-access highways. The inputs to their Intelligent Guidance for Headway and Lane Control system (IGHLC) included the coordinates and velocity of the driver's ve­hicle and surrounding traffic, the road geometry, current road conditions, and driver­selected target cruising speeds and levels of safety. The job of the expert system is to analy
	2.8 shows an example of the expert system logic in an IGHLC system. 
	2.8 shows an example of the expert system logic in an IGHLC system. 
	Two additional examples of expert systems used in ITS projects include the Eu­ropean projects PROMETHEUS (see also Section 2.1.2, Kalman Filters) and DRIVE (Martinez et al., 1990). The aim of both projects was to develop an expert system that can function as a car -co-pilot. An expert's knowledge of the driving environment was analyzed by system designers, who decomposed the driving task into several in­dependent subtasks. These independent subtasks were then allocated to individual neurons in a neural netw
	Traffic Situation No Yes Predict evolution for going Determine best right-lane straight assuming no change assuming no obstacles and safe situation obstacles and safe situation No IFinished! IFinishedI No Maximize safety Determine best left-lane ~hangeassummi safe situatmn Maximize safety 
	Figure 2.8: Expert system logic in an IGHLC system (Niehaus & Stengel, 1991 ). 
	Figure 2.8: Expert system logic in an IGHLC system (Niehaus & Stengel, 1991 ). 

	2.3.3. Blackboard Architecture 
	2.3.3. Blackboard Architecture 
	Many of the newer expert systems have components in addition the three main el­ements mentioned above (the dialog structure, the inference engine, and the knowl­edge base). One component that is sometimes employed is a "blackboard," which is a global database used for temporarily recording any intermediate decisions made by the system. Typically, the blackboard keeps track of three types of decisions, known as the plan, the agenda, and the solution (Hayes-Roth, 1992). The "plan" is the overall strategy for 
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	of expert systems, including speech recognition, computer vision, and many types of military applications. Some researchers in the artificial intelligence community regard blackboard systems as the most promising scheme for the next generation of knowledge-based systems (Maitre et al., 1990). 



	2.3.4. Blackboard Architecture Applications 
	2.3.4. Blackboard Architecture Applications 
	At this time, the engineering literature contains no examples of a blackboard archi­tecture applied to ITS data fusion projects. But a blackboard architecture has been applied to general transportation issues in the work of Capocaccia et al. (1989) of Italy, who used expert surveillance to detect unexpected objects found at railroad crossings. In this project, called ATOME, the blackboard was used for both infer­ence and control functions. Specifically, the authors describe a method for merging data coming 
	Another transportation-related project that employed a blackboard system was that of Leardi et al. (1990), again of Italy, whose Distributed Object-Oriented Multi-sensor Recognition System (DOORS) was used to guide an autonomous ve­hicle through natural outdoor scenes. DOORS is composed of a set of modules in which each module possesses the procedural knowledge to build up an interpretation of the viewed scene at a specific level of abstraction. 
	Many blackboard systems have been used in military expert systems applications. For example, Brogi et al. (1989) used a blackboard prototype to merge reports from radar and other sensors with a priori information. The authors claimed that the major advantage of a blackboard architecture is that it enables system developers to partition the domain knowledge of the expert system into cooperating modules. This knowledge can then be kept separate from control knowledge. Figure 2.9 illustrates how domain knowled
	Other military projects that have incorporated blackboard architectures include the work of Sikka et al. (1989), whose system was able to classify five different 
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	Figure 2.9: Sample blackboard architecture (Leung & Williams, 1991). 
	aircraft by identifying their distinctive features, and Lliuas (1993) who attempted to formulate a generic, ideal blackboard for certain defense applications. 
	2.3.5. Fuzzy Logic 
	Many expert system developers are building their machine knowledge -that is, their IF-THEN decision rules -on the rapidly growing engineering discipline of fuzzy logic. Fuzzy logic is a type of set theory that mathematically describes objects or processes that cannot be categorized into "0-1" binary code. Thus, fuzzy logic is highly valued for its ability to integrate "fuzzy" human reasoning processes with the precision of 
	the computer. The concept of fuzzy logic is similar to Dempster-Shafer evidential reasoning, in that it is another means of dealing with data uncertainties. The data handled in fuzzy systems are often referred to as "soft" data. They are intended, for example, to describe ambiguous classifications such as big, small, rich, poor, fast, and slow. The mathematics of fuzzy set theory originated in 1965 with L.A. Zadeh, who developed a calculus of fuzziness that assigns objects or concepts to an interval scale 
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	between Oand 1; the minimum value is "O" and the maximum value is "l." The math­ematical operators available to fuzzy reasoning systems are the same as those used in traditional set theory: logical connectives such as AND and OR, the complements X and NOT X, and mathematical products or algebraic sums (Gupta, 1992). Addition­ally, the concept of partial set membership also makes possible other mathematical operations not normally found in traditional set theory. Two of these operations in-. elude concentrat
	light heavy ..... ~ :i. 0.5 0 0 5 10 15 20 25 30 rainfall, mm 
	light heavy ..... ~ :i. 0.5 0 0 5 10 15 20 25 30 rainfall, mm 
	Figure 2.10: Fuzzy logic involved with classifying rainfall (Gupta, 1992). 
	2.3.6. Fuzzy Logic Applications 
	Fuzzy set logic is used in an array of decision and control applications: economic and management decision-making, medical diagnostic processes, enhancement of hu­man perception, and large-scale engineering systems (Gupta, 1992). Transportation­related applications of fuzzy systems have been designed for measuring automobile speeds and congestion levels, operating automatic trains using predictive logic, and selecting paths in autonomous vehicle navigation systems (Harris, 1988; Harris & Read, 1989). 26 
	The first two ITS implementations that employed fuzzy set logic in the United States were called Pathfinder and TravTek (Mammano & Sumner, 1989; Mammano & Sumner, 1991; Sumner, 1991; Rillings & Lewis, 1991; Case et al., 1991). Pathfinder was implemented in Los Angeles and TravTek in Orlando, Florida. With each of these systems, fuzzy logic permits traffic conditions to be described through quali-· tative measures such as "no congestion," "congested," "minor incident," or "major incident," instead of the les
	The fuzzy logic process in Pathfinder and TravTek is constantly evaluating which of six data sources will be given priority in determining_system outputs. First, each of the six sources is assigned a quality value based upon its record of reliability. At any given moment, the final score for each source is determined by linearly decrementing the quality of the source score by the age of the data. When the duration of a traffic event is extended, as in the case of an accident or freeway back-up, a human oper



	2.4. STATE-OF-THE-ART SUMMARY 
	2.4. STATE-OF-THE-ART SUMMARY 
	The role of level three data fusion processes is to transform high-volume, raw sensor data into low-volume, high-level information. Knowledge-based expert systems of one form or another predominate in these instances. But before any high-level information can be generated, the raw data from level one fusion must be provided via a Kalman filter algorithm or various methods of data association. The meaning to be gained from these raw sensor data is constructed using various probabilistic methods, such as Baye
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	Table 2.2: Acronyms for leading ITS data fusion projects 
	Table 2.2: Acronyms for leading ITS data fusion projects 
	Table 2.2: Acronyms for leading ITS data fusion projects 

	Acronym 
	Acronym 
	Full Naine 
	Locations 

	ADVANCE 
	ADVANCE 
	Advanced Driver and Vehicle Advisory Navigation Concept 
	Chicago, Illinois 

	AGVs 
	AGVs 
	Autonomous Guided Vehicles 
	United Kingdom 

	Brainmaker 
	Brainmaker 
	Metaphor referring to the human brain 
	Texas A&M 

	DRIVE 
	DRIVE 
	Dedicated Road Infrastructure for Vehicle Safety in Europe 
	Pan-European 

	IGHLC 
	IGHLC 
	Intelligent Guidance for Headway and Lane Control 
	Princeton University 

	Pathfinder 
	Pathfinder 
	A descriptive label 
	Los Angeles, California 

	PRODYN 
	PRODYN 
	Dynamic Programming 
	Toulouse, France 

	PROMETHEUS 
	PROMETHEUS 
	Program for European Traffic with Highest Efficiency and Unprecedented Safety 
	Pan-European 

	TravTek 
	TravTek 
	Travel Technology 
	Orlando, Florida 


	is replete with examples of how these data fusion techniques are being applied in military and industry projects, they are just now beginning to be applied to ITS projects. 
	Table 2.2 summarizes the leading ITS data fusion projects discussed throughout this report. 
	Table 2.3 provides a synopsis of how the leading data fusion techniques described in this report have been bundled together in key ITS projects. These projects are listed according to the date of publication of the articles in which they were described. Note that the year given in column two represents the date the article was published. and not necessarily the date the ITS project was completed. Therefore, one must keep in mind that some of the data fusion techniques listed in Table 2.3 may not actually ha
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	Project 
	Project 
	Project 
	Year 
	Technique( s) 
	Purpose 

	(Author) ADVANCE 
	(Author) ADVANCE 
	1992 
	Kalman filter 
	Forecasts future traffic conditions 

	( Kirson et al.) 
	( Kirson et al.) 
	Neural network 
	Pattern-matches current traffic 

	TR
	situations with historical situations 

	TR
	Expert system 
	Identifies abnormal traffic conditions 

	TR
	Fuzzy logic 
	Permits traffic conditions to be 

	TR
	described with qualitative measures 

	PROMETHEUS 
	PROMETHEUS 
	1992 
	Kalman filter 
	rather than simple "yes-no" responses Constructs 4-D position estimates 

	(Behringer et al.) (Martinez et al.) 
	(Behringer et al.) (Martinez et al.) 
	1990 
	Expert system 
	for autonomous driving Decomposes a driving task into 

	TR
	independent subtasks 

	TR
	Neural Network 
	Allocates one neural net for 

	Brainmaker 
	Brainmaker 
	1992 
	Neural Network 
	each driving subtask Pattern-matches current traffic 

	(Chang) IGIILC 
	(Chang) IGIILC 
	1991 
	Kalman filter 
	situations wtih historical situations Determines vehicle position 

	(Niehaus, Stengel) 
	(Niehaus, Stengel) 
	Bayesian 
	Deals with traffic uncertainty 

	TR
	Expert system 
	Models concepts of Worst-Case 

	Pathfinder 
	Pathfinder 
	1991 
	Fuzzy logic 
	Decision Making Permits traffic conditions to be 

	(Sumner) 
	(Sumner) 
	described with qualitative measures 

	TravTek 
	TravTek 
	1991 
	Fuzzy logic 
	rather than simple "yes-no" responses Permits traffic conditions to be 

	(Sumner) 
	(Sumner) 
	described with qualitative measures 

	DRIVE 
	DRIVE 
	1990 
	Expert System 
	rather than simple "yes-no" responses Decomposes a driving task into 

	(Martinez et al.) 
	(Martinez et al.) 
	independent subtasks 

	TR
	Neural network 
	Allocates one neuron for each driving 

	TR
	subtask 

	PRODYN 
	PRODYN 
	1989 
	Kalman filter 
	Estimates traffic-turning movements 

	(Kcssaci et al.) 
	(Kcssaci et al.) 
	Bayesian 
	Estimates traffic-state variables, e.g., 

	Application to 
	Application to 
	1989 
	DSER 
	queues and saturation Determines state of AGV and outside 

	AGVs: Autonomous 
	AGVs: Autonomous 
	world 

	Guided Vehicles 
	Guided Vehicles 

	(Harris & Read) 
	(Harris & Read) 

	(Harris) 
	(Harris) 
	1988 
	Fuzzy logic 
	Effectively controls AGV's lateral 

	TR
	motions in real time 







	3. DATA FUSION: LOOP DATA FLOWS 
	3. DATA FUSION: LOOP DATA FLOWS 
	The initial sections of this report have outlined the current state-of-the-art for data fusion systems, with a special focus on their use in ITS projects. This section examines a specific data fusion application developed at the UW that uses the WSDOT Traffic Systems Management Center (TSMC) traffic management system (TMS) as the data source. Two main goals have been identified for the UW research effort. One is to gather traffic congestion information from all available sources in order to make reliable tr
	Figure 3.1 shows the current architecture of the UW traffic data fusion system. There are four major parts to the system architecture. The first part is the TMSUW server that was put on the TSMC's VMS machine, identified as HARLEY. This server collects the available loop data from the real time database's (RTDB) main memory. After collecting the data, it broadcasts those data to a local area network at the TSMC,, where another machine "listens" to the broadcast port. 
	The second part of the system is the server called LOOP REBROADCAST. This server resides on the machine called LOOPS, which is hooked into the local area network (LAN) at the TSMC. LOOP REBROADCAST was put on LOOPS rather than on the TSMC's VMS, HARLEY, to avoid possibly disturbing that system and slowing down its processing. The purpose of this server is to collect the broadcast data from TMSUW on VMS. Each data packet is then sent via a Tl link to the server LOOP REPEATER running on a machine located at t
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	Figure 3.1: Architecture of the TSMC traffic reporting system. 
	Figure 3.1: Architecture of the TSMC traffic reporting system. 
	(UW). 
	The third part of this system, just mentioned, is the server called LOOP RE­PEATER. The purpose of LOOP REPEATER is two-fold: it reduces the load on the LOOP REBROADCAST server, and it allows transmissions along the Tl telecom­munications link to stay within capacity limitations. This arrangement also provides for future expansion of the system. LOOP REPEATER can be cascaded to increase the total number of users that can be accommodated. 
	The fourth component of the system is the server needed to provide information to end users. This task is handled by LOOP SERVER, which transmits occupancy and volume data for each loop and station; it also transmits information on the 
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	average speed and length for each speed trap. The TSMC traffic reporting system is configured so that servers can be added to handle different end user requests. 
	Figure 3.2: TSMC global memory databases. 
	3.1. TMSUW ON HARLEY 
	As mentioned above, the TMSC traffic reporting system runs on a VAX machine called HARLEY at the TSMC. Upon starting, it builds several global memory databases, as shown in Figure 3.2. Three global databases are available: TMSJlTDB (real time database), TMS_RMD (ramp meter database), and TMS-FMDB (five-minute database). All of these global data sections are accessible, but the loop information is taken from the RTDB, which is updated every 20 seconds. The two other databases are based on the RTDB data but a
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	RTDB memory data block allocation contains two parts (see Figure 3.3). The first part is a name table that contains information on loop names and their offset in each 20-second data record. The second part contains 181 20-second data records. Each record represents the complete loop recorded in a specific time (every 20 seconds). 
	• 
	• 
	• 
	Name Table: The name table contains all the loop names currently available in the RTDB. Each name is a combination of a cabinet name and a specific loop name. For example, "ES090D:_MN_l" is the loop in cabinet "ES090D," and it is on the main, north-bound lane number 1. The name table also contains information about the loop type. Three types are currently implemented. One is loop, one is station, and one is speed trap. A field also specifies the length of the loop, because all three types of data are not th

	• 
	• 
	Data Record: The RTDB data record is updated every 20 seconds. One hour's worth of data equals 181 (60 x 3+1) records. When the RTDB data record is updated, the data just received from traffic reporter is put in the "new" data block; all the other data blocks shift one slot over towards the newest data. As a result, one hour's worth of data is kept within the new data block. In other words, every 20 seconds each data record rotates to the next data record slot, leaving room for most the current data to be p


	The program TMSUW first reads the name table from the RTDB global memory and then writes it into a file. After writing the file, it starts the data collection cycle. The program maps to the global section of the RTDB database in each cycle and then sets up the corresponding pointers for each data block. It also calls the VMS set event system to calibrate the event flag at 20 seconds, which directs it to start a new collection cycle every 20 seconds. After the event is set for every 20 seconds, the program c
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	Figure 3.3: RTDB memory data block allocation. 
	data records have rotated. If data rotation has occurred, it means a new set of data have been received and put into the "new" data block. Otherwise, the system is reset by traffic reporters. 
	In the first case, when a new set of data have been put into the "new" data block, the program collects the "new" data record, broadcasts it over the LAN in the TSMC, and finishes the collection cycle. The program then goes to the start of the collection cycle and waits for the next 20-second event. However, if the program discovers that the system has been restarted, it will wait a few minutes to ensure that the system successfully restarts and then will broadcast a special packet to the LAN. This special 
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	START read name table check scroll from value RTDB write name table to file map to global section RTDB set event flag to 20 sec· Yes collect 20 sec data broadcast data release virtual memory No releue virtual memory broadcast restart info wait for TMS restart 
	· Figure 3.4: Flow chart of the TMSUW process. 

	3.2. LOOP REBROADCAST SERVER 
	3.2. LOOP REBROADCAST SERVER 
	The server residing on the TSMC VMS machine broadcasts loop data over the LAN at the TSMC every 20 seconds. The LOOP REBROADCAST server running on the machine and hooked into the TSMC VMS monitors the LAN (subnet 192.0.2) to determine whether a broadcast data packet is available. The system architecture of the LOOP REBROADCAST server ca.n be divided into three components, as shown in Figure 3.5. When t.he LOOP REBROADCAST server is st,art,ed, it generates three child procei;scs t.o handle t,he tl-ifferent r
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	Ii stenLAN 192.02 looploop repeaterrebroadcast serverserver send data to child process #3 I I I ...:• ,::'·-'-,-·E--'I I 
	• 
	Child Process Number 1: This process listens to the LAN to determine whether broadcast. data arc\ a.va.ila.blc. If they a.re, it se11ds the received data packet to child process 11urnbcr :t 

	• 
	• 
	Child Process Number 2: This process handles all the connection requests from other programs. After a connection has been accepted, it sends information about the remote program ( such as an IP address or socket port number) to child process number 3. The only connection currently in place is the one to the LOOP REPEATER server, but the system is capable of accepting other connection requests. 

	• 
	• 
	Child Process Number 3: This process actually sends the data packet received from child process number 2 to all the connection sockets. It also receives the broadcast data packet from child process number 1 via UNIX socket pipes. When data from process number 2 are received, it adds the information of remote end to the client list. When data from process number 1 are received, it sends the data packet to all clients on the client lisL 


	Figure 3.5: LOOP REBROADCAST server components. 
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	3.3. LOOP REPEATER SERVER 
	The LOOP REPEATER server is similar to the LOOP REBROADCAST server. One difference is that the LOOP REPEATER requests a connection to the LOOP REBROADCAST server, whereas the LOOP REBROADCAST server monitors the LAN for broadcast data packets. A second difference is that the LOOP REPEATER server connects directly to the Internet rather than connecting to the UW via a Tl link. As a result, it has a greater capacity for handling a large number of clients. This was the main reason for establishing the LOOP REP
	Figure 3.6: Architecture of the LOOP REPEATER server. 

	3.4. LOOP SERVER 
	3.4. LOOP SERVER 
	The LOOP server provides clients with occupancy, volume, average speed, and ayer­age length traffic-related information. This server accepts connection requests from all interested clients. It also accepts user requests for specific loop data. When started,· the server generates three child processes, each of which handles different connection requests and manages different data sets, as requested by clients. The system architecture is shown in Figure 3. 7. The three child processes associated with the LOOP
	• 
	• 
	• 
	Child Process Number 1: The first child process makes a connection request to the LOOP REPEATER server and requests a raw data packet. The connection remains in place after it has been established as the LOOP server waits for the RTDB 20-second data update. Upon receiving a data packet from the LOOP REPEATER server, the LOOP server sends the data packet to child process number 3 via UNIX socket pipes. 

	• 
	• 
	Child Process Number 2: The second child process of the LOOP server handles all connection requests from end users who are interested in receiving loop data. When a client connection is granted, the LOOP server sends the information requested by the user to child process number 3 via UNIX socket pipes. It then resets to wait for connection requests from other interested clients. 

	• 
	• 
	Child Process Number 3: The third child process receives a client's information from child process number 2. After receiving the information, it also checks to see whether the client is asking for only a portion of the available data. For example, a client can specify a list of particular loops, all the available loops on a specific route (such as I-5), or all available loop data. When child process number 3 receives a data packet from process number 1, it assembles the correct data set requested by a clien
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	Figure 3.7: System architecture. 


	4. DATA FUSION: LOOP SPEED ESTIMATES 
	4. DATA FUSION: LOOP SPEED ESTIMATES 
	This chapter presents a robust algorithm for estimating mean traffic speed usmg single inductance loop measurements of volume ( counts of vehicle over a duration) and occupancy (the fraction of some total duration during which the inductance loop senses the presence of a vehicle). Mechanisms to estimate speed from single loops has been of interest to traffic engineers for some time, as speed is not directly observable from single loop measurements (Hall and Persaud, 1988; Leutzbach 1988; Persaud and Hurdle,
	This chapter acknowledges the statistical nature of the measurements taken with inductance loops and presents an algorithm to estimate speed that not only accounts for the statistical nature of the estimate but also provides a robustness test for the estimate. Four measurements are made by a traffic management system, Volume N(t), Occupancy O(t), speed s(t), and vehicle length l(t) (but only volume and occupancy are available from single loops). These measurements are by their nature realizations taken from
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	estimates of speed and travel times but rely almost completely on the measurements ma.de by traffic management systems, and as such they require the use of single inductance loop speed estimates. 
	Previous work has not explicitly included the statistics of the estimated quantities when estimating variables that are not observable. This work explicitly considers the statistics of estimates created by using observations from traffic management systems. The typical measurements are volume (Ni) and occupancy (Oi), and the relationship between volume, occupancy, speed Si;, and length of the jth vehicle li; is, 
	. _ _!_ ~ Ii; 0,-L..J ' (4.1)T i=l Sij here T is the duration of the measurement. The speed and vehicle length are ndom variables with mean values and statistical distributions. We can express this  writing the speed and length observations as the expected value (mean) and some viation (!}.lii, !}.sii) that occurs for this observation, 
	wraby__, de
	(4.2) (4.3) Combining these terms in the form of the RHS of equation (4.1) we get, (4.4) where the statistics of the deviation term are selected such that E {!}.lii} = E {,!},sij} = 0 and E{*} is the expected value operator. Each measurement produces a pair of volume (Ni) and occupancy (Oi) values . To use the statistics of these measurements, let Ei denote the conditional expectation over all realizations that have the volume Ni. Then the conditional expected value of equation (4.1) is (4.5) 
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	Inserting equation ( 4.4) in ( 4.5), we get 
	E-{ lij } = E· { l -+ til } . ' Sij S + tiSij 8 + tiSij
	i 
	Rearranging the RHS, assuming that the variables (A~;,) and tilij are independent and recognizing that E{tilij} = 0, we get (4.7) Expand the RHS in a power series to obtain 
	l'J.. } rE { L.l."s·.tJ tis~-IJ tis~-tJ }
	Ei -=-i 1---+-----+.... (4.8)
	{ 2 3
	8
	8

	si; 8 8 
	Note that E{tisij} = 0, approximating the power series with three terms, and insert­ing the result in equation (4.5), to obtain 
	E-{O·} = Nii [l + Ei{tisfi}l · 
	(4.9)
	' ' Ts 82 
	The variance of the speed estimate can be written, u; = Ei{tisf;}. Substituting and rearranging, we get, 
	2 
	sT [ ]
	8 

	Ni= --Ei {Oi} _ • (4.10)
	2 2
	1 (18 +s 
	The measurement of the occupancy is also a random variable with some mean and some deviation from that mean for the ith measurement. We can express this as, 
	(4.11) ubstitute (4.11) into (4.10) to obtain 2 s2 Ni 8T [ 8 ] tioi 8T [ ] ( 4.12) oi = T u; +s2 -oi T u; +s2 • his form has a deterministic component that contains only moments of the speed istribution and a stochastic component that contains tiOi. In the next section we onsider the solution of the deterministic component. 43 
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	4.1. DETERMINISTIC MEASUREMENTS 
	4.1. DETERMINISTIC MEASUREMENTS 
	In the c~se where there a.re perfect measurements ( e.g. AOi =0), and ea.ch realization of volume and occupancy is equal to the mean of the proba.bHity distribution for that measurement, 
	(4.13) 
	Previous authors have asserted a ratio of measured volumes and occupancies, con­verted to density by a constant, can be used to estimate speed (Hall and Persaud, 1988; Persaud and Hurdle, 1988; Hall and Gunter, 1986; Ross, 1988). However, rearranging equation ( 4.13) to the same form, 
	(4.14)i: (;) =8 [er~: 82] 
	demonstrates that such an estimate is biased by the variability of the speed. An estimate based on perfect measurements can be obtained by solving 
	T -3 ~2 . 2Oi ls -Nis -NiCJs =O (4.15) 
	T -3 ~2 . 2Oi ls -Nis -NiCJs =O (4.15) 

	for s. Equation (4.15) has the form J(s) = 0 and can be solved for the real root.1 This "root finding" solution provides an estimator for s when there a.re idealized noiseless measurements; however, such is Il!eVer the case. The next section provides, an algorithm that addresses, real'. measurements. 

	4.2. STOCHASTIC ME.ASUREMENTS 
	4.2. STOCHASTIC ME.ASUREMENTS 
	Measurements from a traffic management system are realizations from statistical dis­tributions. To address the variability of the observations we present a filtering ap­proach. The general form for the dynamics and observer equations, for a. Kalman :6:hel'. are (Bozic, 1984) 
	· X,H1 -Yk(X1c) +w1c (4.16) Z1c -h1e(X1c} +VJc. (4.17) 
	1The formula of DeMoivne a.I.lows for (!)Be real and two imaginary roots (Kreyszig, 19179•). 
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	For the kth time step we select our state variables to be the estimate of speed for the last two time steps. This autoregressive-like approach explicitly identifies a tem­poral correlation between speed estimates and recognizes that s has some inherent variation in addition to the noise component. For our observables we use the ratio of the measurements for the two previous time steps. The selection of ~ for our ob­servable is based on the examining equation ( 4.1) and noting that the variable Oi is inverse
	measurement function hk(Xk), and we identify 


	[.::J Ok a2 ,t +s2 k.-3Nk l sk X= Z= hk(Xk) = T (4.18) 2 Ok-1+ as 8{£-1-2-3Nk-1 8k-1 
	[.::J Ok a2 ,t +s2 k.-3Nk l sk X= Z= hk(Xk) = T (4.18) 2 Ok-1+ as 8{£-1-2-3Nk-1 8k-1 
	where the measurement equation for hk(Xk) is nonlinear in the state variables. The linear Kalman filter equations are written (Bozic, 1984) 
	where the measurement equation for hk(Xk) is nonlinear in the state variables. The linear Kalman filter equations are written (Bozic, 1984) 
	(4.19) (4.20) 
	where the measurement equation is a linear function of the state variables. To use the linear filtering result, we adopt the extended Kalman filter approach, which linearizes the measurement equation from ( 4.17) about a point Xt ( for implementation we select this point to be the last Xk) 
	( 4.21) 
	and create a new measurement equation, 
	( 4.22) 45 
	where, (4.23) and, 0 (4.24) 0 _ 31 [sf-:_24 +a;J T sk-2 
	Our state-transition matrix, G, provides weights for the contribution of s from the .previous two time steps, 
	(4.25) 
	where a and b are selected using forward/backward least squares estimates of the AR(2) coefficients for the experimentally measured speed. The noise contributions are 
	(4.26) R-O'~ 0 [ N ] (4.27)-0 o-t N 
	where, and values for the variances O'~ and o-; are obtained experimentally. With these N definitions we can use the linear filter solution, 
	Pl -GPk-1 GT+ Qk-1 (4.28) Kk = pl kHk ' T [ HkP ' 1 kHk ' T +Rk rl(4.29) pk = pk 1 . 1-KkHkPk ' ( 4.30) Xk -Gxk-1 +Kk [zk -ilkGxk-1] (4.31) 
	from Bozic (1984) to update the state variables at each time step. This provides an algorithm to create a maximum likelihood estimate of the speed using the observed volumes and occupancies. The confidence we place in this estimate can be tested by calculating the mean car length for ea.ch estimate using 
	(4.32) 46 

	Sect
	and comparing this estimate with long time estimates of the mean (l) and standard deviation (u) of the length distribution. If (l -c) < lk < (l +d) (where c and dare selected based on the statistics of l), the speed estimate is deemed to be acceptable. 
	1


	4.3. EMPIRICAL RESULTS 
	4.3. EMPIRICAL RESULTS 
	In this section presents empirical results for the two estimators presented and com­pares these results with empirical speed trap_ measurements. The two new estimators presented here are (1) the "root finding" method based on the assumptions of deter­ministic values and (2) the filtering method. 
	Measurements of traffic on Interstate 5 in Seattle were taken from the WSDOT Traffic Management System (TMS). The sites selected for testing have pairs of loops that both act as speed traps and measure volume and occupancy. The loop detector stations average (sum) the values for volume and occupancy over a 20-second interval, and all the data presented here are for 20-second averages. 
	In the algorithms presented here, a mean value for length, l, is necessary, as is 0'• To obtain a mean length for the calculation, we used the empirical length estimates from the TMS over a six-day period. The histogram of the observed lengths is shown in Figure 4.1, and the mean value used to seed the calculation is 25.63 feet. This empirically generated distribution of lengths is also useful for testing the robustness of the filter estimate. This test is described later in this chapter. 
	an estimate of the variability of the speed, 
	8 

	The first empirical result presented here is the speed estimate from the roots of equation (4.15). These speed estimates are unbiased point estimates of the speed, given O's and l. A comparison of the root speed estimate and the speed measurement from the speed trap is shown in the center plot of figures 4.2 and 4.3. The estimate has a larger variance than the measured data but generally follows the character 
	of the measured speed. The mean of the deviation of the estimates of speed from the observed 20-second average speed (e.g. µe = E{(s -se)} ) indicate of the bias in the estimator. More conventional estimates using a "g" factor ( taken from the TMS) shown in the bottom plot in figures 4.2 and 4.3, have a bias relative to the 
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	Histogram of observed lengths (sample slze:26087) 0.12.-----~-----,-------,------,-----...--------, 0.1 0.08 0.06 0.04 0.02 20 40 60 80 100 120 Length (ft.) 
	Figure 4.1: Histogram of effective vehicle length. 
	measurements (µ 9 = 3.1 ). The root methodology estimate has little bias relative to the measurements (/tr =0.07). 
	The second speed estimator, the Kalman filter approach, is derived from equations 
	(4.28) through (4.31). The estimate is plotted (see the top plots in figures 4.2 and 
	4.3) with the empirical speed from the speed trap associated with the loop detector from which we obtain the volume and occupancy. In this case, the estimate reflects the variability in the speed as a function of time with a smaller variance than the measured speed. 
	It is important to note that the speed° trap realization is a point estimate of the traffic conditions and is not the mean value of the speed distribution for the traffic conditions as they exist. The robustness of the estimate of speed can be addressed using knowledge of the statistics for mean length as embodied in Figure 4.1 and a calculation of 1; from equation ( 4.32). Speed estimates that produce 1; values that are sufficiently far from the probability mass of the distribution are less reliable than t
	48 
	probability mass in the range of 15 to 40 feet and with small probability of occurrence (less that 0.008) outside this range. The selection of the criteria for accepting the validity of a speed estimate is an engineering judgment based on the probability of occurrence. We define robust estimates of speed to be those estimates that produce a length estimate (for a 20-second average length) in the range of 15 to 40 feet, and those outside this range are deemed unreliable. This criterion provides an independen
	4.5 presents the lengths as measured by the TMS. It is clear that in some cases the estimate made by the filter violates the robustness criteria and would not be used for subsequent modeling calculations and traveler information systems. 
	4.4. SPEED ESTIMATES CONCLUSIONS AND RECOM­MENDATIONS 
	This chapter presents an algorithm to estimate speed from single inductance loops, as well as providing an acceptability test for the estimates. The algorithm specifi­cally acknowledges the statistics of the problem, and the acceptability test uses the statistics of one of the observables to set criteria for evaluating the reliability of the estimate. The algorithm is presented as a Kalman filter using a second-order system equation equivalent to an AR(2) model. The Kalman filter equations have an equiva­le
	Recommendations for use of the algorithmic material presented include: 
	1. 
	1. 
	1. 
	The Kalman filter result can be implemented as a series of algebraic equations by solving the linear algebra in equations ( 4.28) through ( 4.31) making it tractable for use in ATMS and ATIS applications. 

	2. 
	2. 
	The algebraic implementation of the filter solution can be implemented as C or C++ language modules and can then be supplied as a template for future


	ATIS/ATMS activities. 
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	Figure 4.2: Speed estimates at free flow. 
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	Figure 4.3: Speed estimates for low speeds. 
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	Figure 4.4: Effective vehicle length estimates as a func­tion of time. 
	Figure 4.5: Effective vehicle length as measured by the TMS. 

	5. CONCLUSIONS 
	5. CONCLUSIONS 
	This project accomplished three significant tasks. First, a state-of-the-art literature review provided an organizational framework for categorizing the various data fusion projects that have been conducted to date. A popular typology was discussed to situ­ate data fusion technologies into one of three levels, depending on the degree to which sensor data are correlated to provide users with meaningful transit recommendations. The trade-offs that accompany higher-level data fusion efforts -in terms of comput
	A second major component of this report is the description of a local data fu­sion application. This project employs data fusion techniques to correlate input from 
	multiple highway sensors and generate reliable traffic predictions. The resulting in­formation can be displayed for use by commuters as they choose from among various 
	transit options. The architecture of this data fusion system is described in detail. The third component of the project was to create a statistically based algorithm to estimate speed from volume and occupancy measurements. The algorithm presented explicitly accounts for the statistics of the problem and provides a robustness test for the speed estimate. 
	l 
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	A. GLOSSARY WITH ACRONYMS 
	Adaptive (or artificial) neural networks (ANN): See Neural networks. 
	ADVANCE (Advanced Driver and Vehicle Advisory Navigation Concept): A Chicago-area demonstration of ATIS and ATMS (see below) sponsored by the FHWA and the Illinois DOT. The objective is to evaluate the performance of a large­scale dynamic route guidance system. The program seeks to relieve traffic congestion by using alternative approaches for driver information systems; dynamic traffic in­formation acquisition; and incident detection, an~lysis and forecasting. Operation in the northwest suburbs of Chicago 
	Advanced Traffic Management Systems (ATMS): An array of institutional, human, hardware, and software components designed to monitor, control, and manage traffic on streets and highways. · 
	Advanced Traveler Information Systems (ATIS): ITS technologies that assist travelers with planning, perception, analysis, and decision-making. 
	AGV: See Autonomous guided vehicles. 
	AI: See Artificial Intelligence. 
	Artificial intelligence (AI): The subfield of computer science concerned with un­derstanding the nature of intelligent action and constructing computer systems ca­pable of such action. It embodies the dual motives of furthering basic scientific understanding and making computers more sophisticated in the service of mankind. 
	ATIS: See Advanced Traveler Information Systems. 
	ATMS: See Advanced Traffic Management Systems. 
	Autonomous guided vehicles (AGV): Fully autonomous vehicles that utilize on­board intelligent sensors to determine the state of the vehicle itself and the outside world. 
	Bayesian decision theory: The process of selecting an action with the greatest expected value ofutility given a probabilistic model describing an uncertain state. It is based upon Bayes' Theorem, a centuries-old formula used to determine conditional probabilities given a priori (i.e., prior) evidence. These revised probabilities are called a posteriori probabilities. 
	Blackboard architecture: A specialized type of expert system that contains a system component called a blackboard. A blackboard is a global database that can manage multiple cooperating sources of knowledge. Many in the AI community re­gard blackboard systems as the most promising scheme for the next generation of 
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	knowledge-based systems. (See also Expert systems.) 
	Cluster analysis: A general approach to multivariate problems whose aim is to detect whether individual items fall into groups or clusters. 
	Data association: A general method of level one fusion in which one set of sensor data is correlated with another set of sensor data. For instance, new traffic infor­mation can be compared against historical traffic patterns to determine whether an unusual event is taking place. 
	Data fusion: Has to do with the combination of complementary and sometimes competing sensor data into a reliable estimate of the environment to achieve a "whole that is greater than the sum of its parts." 
	Dempster-Shafer evidential reasoning (OSER): A generalization of Bayes rea­soning that offers a way to combine uncertain information from disparate sensor sources by setting up confidence intervals of certainty to replace single-point proba­bilities. 
	DOT: Department of Transportation. Responsible for ITS implementations. 
	DRIVE (Dedicated Road Infrastructure for Vehicle Safety in Europe): A 
	European ITS project that uses an expert system to decompose driving tasks into subtasks and a neural network to allocate these subtasks to individual processing elements. 
	OSER: See Dempster-Shafer evidential reasoning. 
	Expert systems (or knowledge-based expert systems): A computer program that emulates a human expert in a well-bounded domain of knowled~e. Typically, an expert system has three major components: the dialog structure, the mference engine, and the knowledge base. The dialog structure is the interface between the user and the system. These interfaces are designed to verbally explain their reasoning, much like a human expert would. The inference engine "drives" the computer to perform search strategies that arr
	FHWA: The Federal Highway Administration. Responsible for ITS implementations. 
	Figure of merit (FOM): A performance rating that governs the choice of a device for a particular application. For example, the figure of merit of a magnetic amplifier is the ratio of usable power gain to the control time constant. 
	FOM: See Figure of merit. 
	Fuzzy logic: A type of mathematical logic in an expert system that relaxes the requirement that all logical statements must be either completely true or completely false. This permits traffic conditions to be described using qualitative measures rather than rigid binary responses. 
	Gating techniques: Refers to using an electrical circuit to operate as a selecting switch, allowing conduction only during selected time intervals or when the signal magnitude is within certain limits. 
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	TravTek: Located in Orlando, Florida, TravTek (along with the Pathfinder project in southern California) was tbe first ITS program in the United States. TravTek was a three-year joint effort of the American Automobile Association, FHWA, Florida DOT, and General Motors. It employed ATIS technologies to maximize consumer use of traffic and service information. 
	Worst-Case Decision Making: A probabilistic means of predicting the evolution of a controlled dynamic systems state and its environment, using the worst plausible scenario as a basis for allocating resources. 
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	Blackman, S.S. and T.J. Broida. "Multiple Sensor Data Association and Fusion in Aerospace Applications." Journal of Robotic Systems. June 1990:(445-85). An in­depth review of data association and data fusion techniques as applied to aerospace technology. 
	Hackett, J.K. and M. Shah. "Multi-sensor Fusion: A Perspective." Proceedings 1990 IEEE International Conference on Robotics and Automation. 13-18 May 1990: Cincinnati, OH. Vol. 2:(1324-30). Classifies and discusses six categories of data fusion applications: scene segmentation, scene representation, 3-D shape, sensor modeling, autonomous robots, and object recognition. 
	Hager, G.D. "Using Resource-bounded Sensing in Telerobotics." 91 /CAR. Fifth In­ternational Conference on Advanced Robotics: Robots in Unstructured Environments. 
	19-22 June 1991: Pisa, Italy. Vol. 1:(199-204). Does an excellent job of pointing out some of the limitations of the current technology, especially as applied in unstructured environments (like underwater, outer space, etc.). 
	Harris, C.J. "Distributed Estimation, Inferencing and Multi-sensor Data Fusion for Real Time Supervisory Control." Artificial Intelligence in Real-Time Control 1989. Proceedings ofthe /FAG Workshop. 19-21 Sept. 1989: Shenyang, China. (19-24). The author reviews fuzzy logic, Bayesian theory, Dempster-Shafer evidential reasoning, and other methods as applied to autonomous guided vehicles (AGVs). 
	Linn, R.J. and D.L. Hall. "A Survey of Multi-sensor Data Fusion Systems." Proceed­ings of the SPIE -The International Society for Optical Engineering. 1-2 April 1991: Orlando, FL. (13-29). Provides a survey of more than fifty defense-related data fusion systems and summarizes their application and key techniques used. Also presents a taxonomy of fusion techniques according to their fusion level, i.e., the amount of information provi<le<l to the human user. 
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	Beckerman, M. "A Bayes-maximum Entropy Method for Multi-sensor Data Fusion." 
	Proceedings of the 1992 IEEE International Conference on Robotics and Automation. 
	12-14 May 1992: Nice, France. IEEE Comput. Soc. Press, 1992. Vol. 2: (1668-1774). 
	Abstract: The author introduces a Bayes-maximum entropy formalism for multi-sensor data fusion and presents an application of this methodology to the fusion of ultrasound and visual sensor data as acquired by a mobile robot. In this approach the principle of maximum entropy was applied to the construction of priors and likelihoods from data. Distances between ultrasound and visual points of interest in a dual representation were used to define Gibbs likelihood distributions. Both one-and two-dimensional 
	likelihoods are presented and cast into a form which makes explicit their dependence on the mean. The Bayesian posterior distributions were used to test a null hypothesis, and maximum entropy maps used for navigation were updated using the resulting information from the dual representation. 
	Behringer, R., Holt, V., and D. Dickmanns. "Road and Relative Ego-state Recogni­tion." Proceedings of the Intelligent Vehicles '92 Symposium. 29 June-I July 1992: Detroit, MI. IEEE, 1990 (385-90). 
	Abstract: A road interpretation module is presented, which is part of a real-time vehicle guidance system for autonomous driving. Based on bi­focal computer vision, the complete system is able to drive a vehicle on marked or unmarked roads, to detect obstacles, and to react appropriately. The hardware is a network of 23 transputers, organized in modular clus­ters. Parallel modules performing image analysis, feature extraction, ob­ject modelling, sensor data integration and vehicle control, are organized in 
	while, the system has been tested on public roads in real traffic situations, including travel on a German Autobahn autonomously at speeds up to 85 km/h. 
	Belcastro, C.M., Fischl, R., and M. Kam. "Fusion Techniques Using Distributed Kalman Filtering for Detecting Changes in Systems." Proceedings of the 1991 Amer­ican Control Conference. 26-28 June 1991: Boston, MA. American Autom. Control Council, 1991. Vol. 3: (2296-2298). 
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	Abstract: A comparison is made of the performance of two detection strategies that are based on different data fusion techniques. The strate­gies detect changes in a linear system. One detection strategy involves combining the estimates and error covariance matrices of distributed Kalman filters, generating a residual from the used estimates, comparing this resid­ual to a threshold, and making a decision. The other detection strategy involves a distributed decision process in which estimates from distribute
	Blackman, S.S. and T.J. Broida. "Multiple Sensor Data Association and Fusion in Aerospace Applications." Journal of Robotic Systems. June 1990: (445-85). 
	Abstract: Presents a summary of some of the issues and methods encoun­tered in the use of multiple sensors for surve.illance and tracking problems that a.rise in aerospace and defense. Applications include air traffic con­trol using multiple, internetted, ground-based radar sensors, ship-based air defense systems, and air-to-air systems for drug interdiction and for air combat. The functions of data association and data fusion are cen­
	tral to any multiple-sensor fusion application. The authors address these topics for both collocated anq distributed sensing systems. The use of multiple hypothesis tracking (MHT) for data association is discussed as a way of dealing with data association ambiguities. The closely related problem of allocating sensor resources is also addressed, and a general methodology for evaluating multiple sensor tracking system performance is presented. 
	Booth, D.M., Thacker, N.A., Mayhew, J.E.W., and M.K. Pidcock. "Combining the Opinions of Several Early Vision Modules Using a Multi-layer Perceptron." Inter­national Journal of Neural Networks -Research & Applications. June-Dec. 1991: (75-80). 
	Abstract: Deals with the solution of a binary classification problem by acting on the combined evidence of several early vision modules. Each module provides an opinion on the identity of an individual image element based on a specific area of expertise, such as texture, motion, depth, etc. The problems involved in reaching a consensus of opinion are discussed and the activeness of using a trained, multi-layer perceptron as a tool for data fusion is examined. Some preliminary results are reported. 
	Boyce, D.E., Kirson, A., and J.L. Schofer. "Design and Implementation of AD­VANCE: the Illinois Dynamic Navigation and Route Guidance Demonstration Pro­gram." VNIS '91. Vehicle Navigation and Information Systems Conference Proceed­ings. 20-23 Oct. 1991: Dearborn, MI. Soc. Automotive Eng., 1991. Vol I: (415-26). 
	Abstract: An overview is presented of ADVANCE (Advanced Driver & Vehicle Advisory Navigation Concept), a program to design, implement and evaluate an in-vehicle navigation and route guidance system with 
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	dynamically updated travel time information. The implementation of this program is the largest field demonstration of an Intelligent Transportation System (ITS) conducted thus far. A brief description is given of this demonstration program and the activities planned for its design and test phase. 
	Broatch, S.A. and A.J. Henley. "An Integrated Navigation System Manager Using Federated Kalman Filtering." Proceedings of the IEEE 1991 National Aerospace and Electronics Confer'ence NAECON 1991. 20-24 May 1991: Dayton, OH. IEEE, 1991. Vol. 1: (422~426). 
	Abstract: A federated Kalman filter architecture has been developed in which Kalman filter processing is distributed among the navigation sen­sors to be integrated. Each navigation sensor with its Kalman filter can, in conjunction with the reference INS (Inertial Navigation System), be considered as a subsystem which functions as an independent manager. A central data fusion function is used to integrate the information from these navigators. Such a federated architecture can offer a number of ad­vantages o
	Brogi, A., Filippi, R., Gaspari, M., and F. Turini. "An Expert System for Data Fusion Based on a Blackboard Architecture." Expert Systems and Their Applications -Specialized Conference. Artificial Intelligence and Defense, Expert Systems and Maintenance, Expert Systems and Medicine. 30 May-3 June 1988: Avignon, France (147-65). 
	Abstract: Data fusion addresses the problem of merging data coming from different sensors with other information sources. In this paper, an approach to data fusion which uses AI techniques is shown. An expert system prototype, merging reports received from a radar and a jammer strobe with a priori known information, is presented. The system is built upon a general blackboard architecture, which has been built on top of Prolog. The characteristics of the blackboard architecture model have allowed the authors
	Buede, D.M. and E.L. Waltz. "Benefits of Soft Sensors and Probabilistic Fusion." Signal and Data Processing of Small Targets 1989. Proceedings of the SPIE -The International Society for Optical Engineering. 27-29 March 1989: Orlando, FL. 
	SPIE, 1989 (309-20). 
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	Abstract: Describes and quantifies the benefits of soft-decision sensors and probabilistic data fusion relative to hard-decision sensors and nonnu­merical ( e.g. Boolean logic) data fusion. Hard sensors measure signals and return "yes/no" responses (declarations) based upon decision criteria within each sensor. Soft sensors return a measure of confidence (such as a probability) that quantifies the uncertainty in detection and/or iden­tification. These soft responses are integrated via a fusion algorithm. Th
	Butini, F., Cappellini, V., and S. Fini. "Remote Sensing Data Fusion on Intelligent Terminals." European Transactions on Telecommunications and Related Technologies. Nov.-Dec. 1992: (555-63). 
	Abstract: This paper focuses on the possibilities offered by intelligent terminals applied to multi-sensor image data processing. The state of the art of remote sensing and its future development are briefly analyzed in order to underline the need for an intelligent use of the large amount of data that will be available in future years. Data fusion is introduced as an interesting technique both to combine data collected by remote sensors and to extract the information which is not available from each 
	separate informative channel. Artificial neural networks are presented as a powerful tool to be used in data fusion processing because of their capability to process data without any a priori information of the data set. An example of neural network processing on multi-sensor airborne data is given in order to show the effective possibility offered by an intelligent terminal in high-level processing of sensor data. 
	Cameron, A. and H.L. Wu. "Identifying and Localizing Electrical Components: A Case Study of Adaptive Goal-directed Sensing." Proceedings of the 1991 IEEE Inter­national Symposium on Intelligent Control. 13-15 Aug. 1991: Arlington, VA. IEEE, 1991 (495-500). 
	Abstract: The ability to reconfigure sensors dynamically between data collection operations ( often termed active sensing)· enables planning of sensing strategies. Each sensory action will improve knowledge of the environment; hence, each sensory action can be chosen utilizing a larger knowledge base than was available for previous actions. Consequently, a strategy consisting of a sequence of sensory actions can be planned in an adaptive manner, with data obtained from each action influenc­ing the selection
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	Capocaccia, G., Damasio, A., Regazzoni, D.S., and G. Vernazza. "Data Fusion Ap­proach to Obstacle Detection and Identification." Proceedings of the SPIE -The In­ternational Society for Optical Engineering. 7-9 Nov. 1988: Cambridge, MA. SPIE, 1988. Vol. 1003: (409-19). 
	Abstract: Data fusion is applied to the problem of detecting and identi­fying obstacles in a static ( or slowly changing) known scene. Automatic detection of unexpected objects is of crucial importance in reducing the need for personnel in surveillance stations. Possible applications to the area of rail transportation systems are currently being explored, and re­sults for a level crossing monitoring situation are presented. The authors define a framework that allows the exploitation of multiple sensors or m
	Case, E.R., Van Aerde, M, and M. Krage. "Supporting Routines for Modelling the Traffic Responsive Features of the TravTek System using INTEGRATION." VNIS '91. Vehicle Navigation and Information Systems Conference Proceedings. 20-23 Oct. 1991: Dearborn, MI. Vol. 2: (681-91). 
	Abstract: The INTEGRATION simulation model is being applied at Queen's University, on behalf of General Motors Research Labs, as a tool to perform a dynamic traffic simulation study of the TravTek route guid­ance experiment in Orlando, Florida. While there were several different ways in which the INTEGRATION model itself was adapted to be able to model the dynamic and route guidance features of the TravTek system, the authors focus on describing the associated dynamic modeling routines which needed to be mo
	Chang, E.C.P. "A Neural Network Approach to Freeway Incident Detection." VNIS '92. The Third International Conference on Vehicle Navigation & Information Sys­tems. IEEE, 1992 (641-47). 
	Abstract: Freeway and arterial incidents often occur unexpectedly and cause undesira.ble congestion and mobility loss, even where surveillance, communications, and control (SC &C) systems are in operation. Auto­matic incident detection should apply available information observed from 
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	freeway detector stations. The most commonly used method is the com­parative or California-type algorithm in which traffic operational charac­teristics between consecutive detector stations are continuously monitored and closely evaluated. This study explores the neural network approach that applies historical detector data to reduce possible false alarms and lessen the operational impacts of each incident. 
	Chao, J.J. "Knowledge-based Moving Target Detector." ISNCR-89. Noise and Clut­ter Rejection in Radars and Imaging Sensors. Proceedings of the Second International Symposium. 14-16 Nov. 1989: Kyoto, Japan. Inst. Electron. Inf. Commun., 1990 (520-525). 
	Abstract: A knowledge-based, moving target detector is proposed. It ex­tracts feature parameters from radar signals. Then, a knowledge base in­terprets the value of each feature parameter in terms of Dempster-Shafer's (1976) belief or disbelief for the associated hypotheses. Finally, Demp­ster's (1968) combining rule is employed to the fusion of the decision information. 
	Chao, J.J., Chen~, C.M., and C.C. Su. "A Moving Target Detector Based on In­
	formation Fusion.' Record of the IEEE 1990 International Radar Conference. 1 -10 
	May 1990: Arlington, VA. IEEE, 1990 (341-4). 
	Abstract: Moving target detector (MTD) related multiple-hypothesis test­ing is considered, and the Dempster-Shafer theory is applied to this prob­lem. Feature parameters are extracted from radar signals, and the value of eMh fea.ture parameter is interpreted in terms of Dempster-Shafer's belief or disbelief for the associated hypotheses. Using Dempster's combining rule, a generalized likelihood ratio test is derived. 
	Collins, J.B. and J.K. Uhlmann. "Efficient Gating in Data Association with Multi­variate Gaussian Distributed States." IEEE Transactions on Aerospace and Electronic Systems. July 1992: (909-16). 
	Abstract: An efficient algorithm for evaluating the associations between two sets of data with Gaussian error is described, e.g. between a set of measured state vectors and a set of estimated state vectors. A gen­eral method is developed for determining, from the covariance matrix, minimal cl-dimensional error ellipsoids for the state vectors which always overlap when a gating criterion is satisfied. Circumscribing boxes, or cl­ranges for the data ellipsoids are then found and whenever they overlap the asso
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	Durrant-Whyte, H.F., Rao, B.Y.S., and H. Hu. "Toward a Fully Decentralized Ar­chitecture for Multi-sensor Data Fusion." Proceedings 1990 IEEE International Con­ference on Robotics and Automation. 13-18 May 1990: Los Alamitos, CA. IEEE Comput. Soc. Press, 1990. Vol. 2: (1331-1336). 
	Abstract: A fully decentralized architecture is presented for data fusion problems. This architecture takes the form of a network of sensor nodes, each with its own processing facility, which together do not require any central processor or any central communication facility. In this architec­ture, computation is performed locally and communication occurs between any two nodes. Such an architecture has many desirable properties, in-· eluding robustness to sensor failure and flexibility to the addition or lo
	Easthope, P.F., Goodchild, E.J.G., and S.L. Rhodes. "A Computationally Tractable Approach to Real-time Multi-sensor Data Fusion." Proceedings of the SPIE -The International Society for Optical Engineering. 27-29 March 1989: Orlando, FL. SPIE, 1989. Vol. 1096: (298-308). 
	Abstract: A target-oriented method for sensor data fusion is being devel­oped to provide practical, automated, multi-sensor tracking in multiple­target environments of any size. Partitioning by target track offers the g_reatest scope for processing concurrency and forms the basis of the de­sign. 
	Fennelly, A.J., Woosley, J.K., McMahon, D.M., Bhuminder, S., and J.W. Wolfs­berger. "Multivariate Data Spaces and Multivariable Systems Analysis for Explosive Detection Systems Using X-rays." Proceedings of the SPIE -The International So­ciety for Optical Engineering. 23-24 July 1992: San Diego, CA. SPIE, 1992. Vol. 1736: (159-70). 
	Abstract: The problems of maximizing the probability of detection while minimizing the probability of false alarms (P/sub F/) in the case of ex­plosive device detection for aviation security is addressed. X-ray explosive detection systems (XREDS) are highlighted and difficulties with currently available detection systems are reviewed: The basic problem lies in the use of single-hit, single-phenomenology sensor systems. Cluster analysis, factor an·alysis, and principal component analysis are applied to provi
	Fincher, D.W. and D.F. Mix. "Multi-sensor Data Fusion Using Neural Networks." 1990 IEEE International Conference on Systems, Man, and Cybernetics. 4-7 Nov. 1990: Los Angeles, CA. IEEE, 1990 (835-8). 
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	Abstract: A general approach to the use of neural networks for data fusion is outlined. The discussion begins with examples of data fusion problems and a pattern recognition example is given to illustrate the con­cepts involved in data fusion. The differences between using post-and pre-detection signals and the advantages of using the latter are discussed. How to apply a neural network to the data fusion problem is demonstrated, and experimental results for a character recognition task are given. The genera
	Hackett, J.K. and M. Shah. "Multi-sensor Fusion: A Perspective." Proceedings 1990 IEEE International Conference on Robotics and Automation. 13-.18 May 1990; Cincinnati, OH. IEEE, 1990. Vol. 2: (1324-30) 
	Abstract: A survey of the state of the art in multi-sensor fusion is pre~ sented. Papers related to data fusion are surveyed and classified into six categories: scene segmentation, representation, 3-D shape, sensor mod­eling, autonomous robots, and object recognition. A number· of fusion strategies are employed to combine sensor outputs. These strategies range from simple set intersection, logical and operations, and heuristic produc­tion rules to more complex methods involving nonlinear, least-squares fits
	Hager, G.D. "Using Resource-bounded Sensing in Telerobotics." 91 ICAR. Fifth In­ternational Conference on Advanced Robotics: Robots in Unstructured Environments. 
	19-22 June 1991: Pisa, Italy. IEEE, 1991. Vol. 1: (199-204). 
	Abstract: Investigates the use of resource-bounded sensing to increase the performance of telerobotic systems. By examining the role of sensing in telerobotics, the authors isolate several desirable sensing functipns to be performed. They then review the state of the art in sensor data fusion and point out some of the limitations of the current technology, particularly regarding its use in unstructured environments. Methods more suitable for unstructured environments require information about the goals of t
	Haimovich, A.M., Yosko, J., Greenberg, R.J., Parisi, M.A., and D. Becker. "Fusion 
	of Sensors with Dissimilar Measurement/Tracking Accuracies." IEEE Transactions on Aerospace and Electronic Systems. Jan. 1993: (245-9). 
	Abstract: The case of data fusion employing sensors dissimilar in their measurement/tracking errors is considered. It is shown that the fused track performance is similar whether the sensor data are fused at the track level or at the measurement level. The case of a cluster of tar­
	gets, resolved by one sensor but. not the other, is also considered. Under certain conditions the fused track may perform worse t.han the worst of the individual sensors. A remedy to this problem is presented through modifications of the association algorithm. 
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	Harris, C.J. "Distributed Estimation, Inferencing and Multi-sensor Data Fusion for Rea.I Time Supervisory Control." Artificial Intelligence in Real-Time Control 1989. Proceedings of the [FAG Workshop. 19-21 Sept. 1989: Shenyang, China (19-24). 
	Abstract: Fully-autonomous or supervisory-controlled guided vehicles that 
	utilize on-board intelligent sensing to determine a vehicle's state, the ex­
	ternal world, correlate real time events/objects with mapped knowledge, monitor a vehicle's own system health, and compute dynamically its own control strategy, require the use of a wide range of sensors and the means to fuse or integrate disparate sensor databases when they refer to the same object. The author considers a multi-level approach to sensory integration for AGVs: level 1 -local positional estimation, level 2 -sensory consensus, level 3 -sensor fusion, and level 4 -situation assessment. 
	Harris, C.J. and A.B. Read. "Knowledge-based Fuzzy Motion Control of Autonomous 
	Vehicles." Artificial Intelligence in Real-Time Control. Proceedings of the IFAC Workshop. 21-23 Sept. 1988: Swansea, UK (139-44). 
	Abstract: An intelligent, mobile, land-ba.sed autonomous vehicle can be modelled as a hierarchy of multi-sensor data fusion, scene recognition, path planning, navigation and motion control. This paper is directed towards the motion control level in developing rule-based fuzzy logic con­trollers th.at are self-adaptive to substantial changes in plant parameters and to inadequacies in physical modelling. It is shown that a land-based vehicle, and its guidance and control, can be modelled as a series of con­ne
	Hazlett, T.L., Cofer, R.H., and H.K. Brown. "Explanation Mode for Bayesian Auto­matic Object Recognition." Automatic Object Recognition II. Proceedings of the SPIE -The International Society for Optical Engineering. 22-24 April 1992: Orlando, FL. SPIE, 1992 (258-268). 
	Abstract: Long-standing results show that the paradigm of Bayesian ob­
	ject recognition is truly optimal in a minimum probability of error sense. To a large degree, the Bayesian paradigm achieves optimality through adroit fusion of a wide range of lower informational data sources to give a higher quality decision, a very "expert system" -like capability. When var­ious sources of incoming data are represented by C++ classes, it becomE:_s possible to backtrack automatically the Bayesian data fusion process, as­signing relative weights to the more significant data and their combi
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	Hoballah, LY. and P.K. Varshney. "Distributed Bayesian Signal Detection." IEEE Transactions on Information Theory. Sept. 1989: (995-1000). 
	Abstract: The signal detection problem is considered for a case in which distributed sensors are used and a global decision is desired. Local deci­sions from the sensors are fed to a data fusion center, which yields a global decision based on a fusion rule. A Bayesian formulation of the problem is considered, and a person-by-person optimization of the overall system is carried out. The special case of identical detectors with independent observations is considered, as well. An illustrative example is presen
	Hughes, T.J. "Sensor Fusion in a Military Avionics Environment." Measurement and Control. Sept. 1989: (203-205). 
	Abstract: The Tactical Decision Aid is an aid to pilots under attack by 
	surface-to-air missiles. It handles certain decisions and leaves others to 
	the pilot. It is programmed with specific pre-mission intelligence and must perform sensor data fusion, threat assessment and planning. The article concentrates on the data fusion function. The system must identify threats where possible and distinguish them from non-threatening objects. Un­certainty, resulting from incomplete knowledge and imprecision and incon­sistency of data must be taken into account. Data association, correlation and combination are performed. Dempster-Shafer theory is found to be the
	Jewitt, T.W. "Data Fusion of Outputs Provided by a Distributed Field of Passive Sensors.'r Proceedings ofthe SPIE-The International Society for Optical Engineering. 20-22 April 1992: Orlando, FL (348-59). 
	Abstract: A clustering algorithm for this purpose exploits the tendency of spatial clusters, corresponding to targets, to be formed by the set of all possible localizations computed by triangulation of sensor detections taken two at a time. The algorithm incorporates both a priori and a posteriori information relevant to the task, but differs from the Bayesian approach in being well suited to mapping to an MIMD processing architecture. A simulation system is described, and its results are summarized. 
	Kessaci, A., Farges, J.L., and J.J. Henry. "On Line Estimation of Turning Move­ments and Saturation Flows in PRODYN." Control, Computers, Communications in Transportation. Papers from the IFAC/IFIP/!FORS Symposium. 19-21 Sept. 1989: Paris, France. IFAC. 1990 (191-7). 
	Abstract: PRODYN is the French real-time traffic control algorithm de­veloped by CERT and assessed through ZELT experimental field tests in Toulouse. It is based on dynamic programming sub-system optimiza­tion and decentralized coordination. The real-time optimization is imple­mented on a rolling horizon and state variables, like queues, are estimated by Bayesian techniques. As PRODYN still requires manual introduction of traffic parameters, like turning movement ratios (TMR) and satura­tion flow rates (SFR
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	-
	Kim, K. "Bayesian Inference Network: Applications to Target Tracking." Proceedings of the SPIE -The International Society for Optical Engineering. 20-22 April 1992: Orlando, FL. SPIE, Vol. 1698: (360-71 ). 
	Abstract: This paper provides a guideline for applying data fusion tech­niques to a practical problem: the fusion of target identification attribute measurements. Formation of a consensus function is presented and fol­lowed by construction of an hierarchical, probabilistic network for com­puting a joint probability density. An identification fusion processing approach is described and integrated into a generalized track/data asso­ciation algorithm. 
	Kirson, A., Smith, B.C., Boyce, D., and J. Shofer. "The Evolution of ADVANCE." VNIS '92. The Third International Conference on Vehicle Navigation & Information 
	Systems. IEEE, 1992 (516-23). 
	Abstract: ADVANCE is a public/private sector partnership -the first of its kind in North America -established to field test many aspects of dynamic route guidance. It is being implemented in the Chicago area and is sponsored by the Federal Highway Administration and the Illinois DOT, among others. Officially launched on July 9, 1991, ADVANCE will be implemented in two phases. Phase I will deploy a 20-vehicle test fleet equipped with dynamic route guidance systems which will interact with a preliminary versi
	Kraiss, K.F. and H. Kuttelwesch. "Identification and Application of Neural Oper­ator Models in a Car Driving Situation." IJCNN '91 Seattle: International Joint Conference on Neural Networks. 8-14 July 1991: Seattle, WA. Vol. 2: (917). 
	Abstract: Summary form only. The authors investigated whether neural networks are applicable as operator models in man-machine systems. A two-lane, car-driving task was used as an experimental paradigm. Various network architectures were tested. In particular, a combination of func­tional link and back propagation is proposed as a novel, rapidly-trainable structure. It is shown experimentally that individual human driving char­acteristics are identifiable from the input/output relations of the trained netwo
	Leardi, C., Murino, V., and C.S. Regazzoni. "Scene Interpretation by Perceptual Goals Integration." Proceedings of the IASTED International Symposium Artificial Intelligence Application and Neural Networks -AINN '90. 25-27 June 1990: Zurich, Switzerland ( 133-6). 
	Abstract: A distributed blackboard system (DOORS: Distributed Ob­ject Oriented Multi-sensor Recognition System) has been developed to 
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	integrate information provided by multiple sensors (e.g. RGB camera, infrared camera, etc.). Hierarchical frame networks are used as a com­mon representation format for multi-level data fusion purposes. DOORS is composed of a set of modules, with each containing procedural knowl­edge to build up scene interpretation at a specific level of abstraction. Rough sensor data are transformed into symbolic representations (e.g. fused data) by local fusion processes, which integrate multi-sensor obser­vations. In th
	Lee, R.H. and R. Leahy. "Segmentation of Multi-sensor Images." Sixth Multidimen­
	sional Signal Processing Workshop. 6-8 Sept. 1989: Pacific Grove, CA. IEEE, 1989, 
	(23). 
	Abstract: Summary form only. Regions of the images observed by each sensor are modeled as noncausal Gaussian Markov random fields (GM­RFs ), and labeled images are assumed to follow a Gibbs distribution. The region labeling algorithms then become functions of model parame­ters, and the multi-sensor image segmentation problems become inferern;:e problems, given multi-sensor parameter measurements and local spatial interaction evidence. Two different multi-sensor image segmentation al­gorithms -maximum a post
	Leung, D.S.P. and D.S. Williams. "A Multiple Hypothesis Based Multiple Sensor Spatial Data Fusion Algorithm." Automatic Object Recognition. Proceedings of the SPIE -The International Society for Optical Engineering. 3-5 April 1991: Orlando, FL. SPIE, 1991. Vol. 1471: (314-325). 
	Abstract: An algorithm for correlating all tracks from different sensors on the basis of their spatial characteristics is presented. The technique is an extension of the multiple hypothesis technique for tracking multi­ple targets using a single sensor in a cluttered environment: all feasible correlation hypotheses are considered and maintained for at least a short period. The likelihood for these hypotheses to be correct is evaluated and updated with the arrival of new data. The unlikely hypotheses are dis
	Lin, C.F., Yang, C., Cloutier, J, Evers, J.H., and R. Zachery. "Fusion of Hybrid Data in Mode Estimation." Proceedings of the 30th IEEE Conference on Decision and Control. 11-13 Dec. 1991: Brighton, UK. IEEE, 1991. Vol. 3: (3072-81). 
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	Abstract: The adaptive management of a multi-sensor system is indispens­
	able for ensuring the synergistic use of multiple sensors to improve system performance. Two aspects of a multi-sensor system are addressed. First, the problem of adaptive management of multiple sensors as a function of environmental and operational conditions is considered. Second, an inves­tigation of various fusion schemes at different levels is performed by con­sidering the use of hybrid measurements which are typically continuous­valued and discrete-valued. The hybrid-measurement-based estimation of th
	Linn, R.J. and D.L. Hall. "A Survey of Multi-sensor Data Fusion Systems." Proceed­
	ings of the SPIE -The International Society for Optical Engineering. 1-2 April 1991: 
	Orlando, FL. SPIE, 1991. Vol. 1470: (13-29). . 
	Abstract: Multi-sensor data fusion is the integration of data from multiple sensors to perform inferences which are more accurate and specific than that available by processing single-sensor data. Levels of inference range from target detection and identification to higher-level situation assess­ment and threat assessment. In recent years, data fusion systems have been developed for a variety of applications including IFFN, C/sup3/I, tactical resource management, and strategic warning, as well as non­milita
	Liu, L.J., Gu, Y.G., and J.Y. Yang. "Inference for Data Fusion." Neural and Stochas­tic Methods in Image and Signal Processing. Proceedings of the SPIE -The Interna­tional Society for Optical Engineering. 20-23 July 1992: San Diego, CA. SPIE, 1992 (670-677). 
	Abstract: Data fusion has been widely used in various fields of automa­tion. The authors describe a multi-sensor integration system: a range and intensity image processing system, which can be used for object recogni­tion and classification. In data fusion processing, a new method called the generalized evidence inference method is used by the system. The method presented here unifies both Bayesian theory and Dempster-Shafer's evi­dential reasoning (DSER) for the combination of information from di­versified
	Llinas, .J. and R.T. Antony. "Blackboard Concepts for Data Fusion Applications." International Journal of Pattern Recognition and Artificial Intelligence. April 1993 (285-308). 
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	Abstract: While the specific definitions of a "situation assessment" (SA) and a "threat assessment" (TA) have proven to be problem-dependent for most defense applications, these notions generally encompass a large quantity of knowledge which reflect the dynamic constituency-dependency -relationships among objects of various classes, as well as events and ac­tivities of interest. This paper expands on the processes and techniques involved in SA and TA analysis and describes, from various points of view, why 
	Lure, Y.M.F., Grody, N.C., Chiou, Y.S.P., and H.Y.M. Yeh. "Data Fusion with Artificial Neural Networks for Classification of Earth Surface from Microwave Satellite Measurements." Telematics and Informatics. Summer 1993: (199~208). 
	Abstract: A data fusion system employing artificial neural networks is 
	used for fast and· accurate classification of five Earth surface conditions 
	and surface changes based on seven Special Sensor Microwave Imager (SSMI) multichannel microwave satellite measurements. The measure­ments include brightness temperatures at 19, 22, 37, and 85 GHz at both horizontal and vertical polarizations ( only vertical at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert 
	(b) preliminary classification of Earth surface patterns using two sepa­rate and parallel-acting classifiers: back-propagation neural network and binary decision tree classifiers; and ( c) data fusion of r~sults from prelimi­nary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system con­figuration is an hierarchical, neural network architecture in w
	Maitre, B. and H. Laasri. "Cooperating Expert Problem-solving in Blackboard Sys­tems: ATOME Case Study." Decentralized A.I. Proceedings of the First European Workshop on Modelling Autonomous Agents in a Multi-Agent World. 16-18 Aug. 1989: Cambridge, UK. North-Holland: Amsterdam, Netherlands, 1990 (251-63). 
	Abstract: Blackboard systems are a kind of medium-gained, multi-agent system that deals with multiple cooperating sources of knowledge. They have been successfully used in a variety of applications, including speech recognition, computer vision, data fusion, situation assessment, etc. Many people in the AI community regard them as the most promising scheme for the next generation of knowledge-based systems. The blackboard sys­tems developed by AI researchers fall somewhere in the range between 
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	being purely efficient and purely flexible. At the purely efficient end are systems in which a scheduler follows a rigorous procedure, scheduling a planned sequence of knowledge sources' activities that monotonically as­semble compatible solution elements. At tlie purely flexible end are sys­tems in which a scheduler applies many conflicting heuristics that are extremely sensitive to unanticipated problem-solving states, scheduling activities that assemble elements out of which a complete solution only grad
	Mammano, F.J. and R. Sumner; "Pathfinder Status and Implementation Experi­
	ence." VNIS '91. Vehicle Navigation and Information Systems Conference Proceed­ings. 20-23 Oct. 1991: Dearborn, MI. Vol. 1: (407-13). 
	Abstract: An overview is presented of the Pathfinder system, which has been installed in Los Angeles, California. The Pathfinder system delivers roadway congestion messages to drivers. These messages are either speech or text. The driver can switch between these at any time by using buttons on the Etak monitor. The manner in which the messages are generated is discussed along with speech production, communication testing and display mounting. 
	Mammano, F. and R. Sumner. "Pathfinder System Design." VNIS '89. Conference of the First Vehicle Navigation & Information Systems. 11-13 Sept. 1989: Toronto, Canada ( 484-8). 
	Abstract: The authors describe an experimental project designed to test the feasibility of using the latest technological devices to aid motorists in avoiding urban traffic congestion. The basic objectives are to design, in­stall, and operate a system that will provide real-time information to mo­torists in their vehicles; to evaluate drivers' responses to the information provided; to evaluate the utility of using vehicles as a source of information on traffic conditions; and to evaluate a computer-assisted
	Martinez, D., Esteve, D., and H. Demmou. "Evaluation of a Modular Multilayer Architecture for Recognizing Dangerous Situations in Car Driving." Neuro-Nimes '90. Third International Workshop. 12-16 Nov. 1990: Nimes, France (71-80). 
	Abstract: This work falls within the framework of the programs Drive and Prometheus, whose global aim is the development of a car co-pilot. The authors propose a modular neural architecture to recognize dangerous car 
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	driving situations in real time. The architecture of the system is built with the help of an expert with detailed knowledge of the problem. This makes it possible to decompose a task into several independent subtasks and to allocate a distinct neural module to learn each subtask. They show that the application of this modular approach to recognize dangerous driving situations on a motorway improves the system's performance. 
	Moutarlier, P. and R. Chatila. "Stochastic Multisensory Data Fusion for Mobile Robot Location and Environment Modelling." Robotics Research: Fifth International Symposium. 28-31 Aug. 1989: Tokyo, Japan. MIT Press, 1990 (85-94). 
	Abstract: Presents a rigoro~s, formal approach to deal with stochastic sensory data fusion and develops it in the context of environment map­making and robot location from noisy data. The approach relies first on using a unique reference frame wherein all object frames (and the robot) are known. The authors demonstrate, however, that local relationships are preserved. A formalism for manipulating uncertain data (related -to Kalman filtering but taking into account spatio-temporal correlations) is developed.
	Niehaus, A. and R.F. Stengel. "Probability-based Decision Making for Automated Highway Driving." VNIS '91. Vehicle Navigation & Information Systems Conference Proceedings. 20-23 Oct. 1991: Dearborn, MI. Soc. Automotive Eng.: Warrendale, PA, 1991. Vol. 2: (1125-36). 
	Abstract: Real-time, rule-based guidance systems for autonomous vehicles on limited-access highways are investigated. The goal of these systems is to plan trajectories that are safe while satisfying drivers' requests based on stochastic information about the vehicle state and the surrounding traffic. A rule-based system is used for high-level planning. Given a stochastic model of the traffic situation driven by current measurements, the probable evolution of traffic and the best trajectory to follow are pre
	Nijhuis, J., Hofllinger, B., Neussber, S., and A. Siggelkow. "A VLSI Implementation of a Neural Car Collision Avoidance Controller." I.JCNN '91 Seattle: International 
	Joint Conference on Neural Networks. 8-14 July 1991: Seattle, WA. Vol 1: (493-9). 
	Abstract: The authors present a neural solution to the car collision avoid­ance problem. The complete path design from problem identification to hardware implementation is discussed. It is shown that a thorough study of the control task leads to a well-chosen representation for the environ­ment data (network input) and the control directives (network output) so that car dynamics are handled and the learning and generalization ca­pabilities of the neural network are fully exploited. The selection of a suitab
	90 
	Payne, T. "Central Fusion of Sensor Information Using Reasoned Feedback." Complex Systems: From Biology to Computation. IOS Press: Amsterdam, Netherlands, 1993 (248-59). 
	Abstract: A consistent approach is presented for the fusion of multi-sensor information. The fusion process allows for different sensors which can be located at different sites and have little to no overlap in their coverage. The information from each sensor is processed locally to remove noise and generate hypotheses about objects in its field of view. These hypotheses are transmitted to a central location where they are fused using Shafer­Dempster reasoning. The reasoned conclusion of this data fusion is 
	Puente, E.A., Moreno, L., Salichs, M.A., and D. Gachet. "Analysis of Data Fusion Methods in Certainty Grids: Application to Collision Danger Monitoring." Proceed­ings !ECON '91. 1991 International Conference on Industrial Electronics, Control and Instrumentation. 28 Oct.-1 Nov. 1991: Kobe, Japan. IEEE, 1991. Vol. 2: (1133-7). 
	Abstract: The authors focus on the use of occupancy grid representation to maintain and combine the information acquired from sensors about the environment. This information is subsequently used to monitor robot collision danger risk and take that risk into account to initiate the ap­propriate response maneuver. The occupancy grid representation uses a multidimensional tessellation of space into cells, where each cell stores some information about its state. A general model associates a random vector that e
	Rillings, J.H. and J.W. Lewis. "TravTek." VNIS '91. Vehicle Navigation and Infor­mation Systems Conference Proceedings. 20-23 Oct. 1991: Dearborn, MI. Vol. 2: (729-37). 
	Abstract: A description is given of TravTek, a joint public-private sector project intended to develop, test, and evaluate an integrated advanced driver information system and supporting infrastructure. TravTek will provide drivers of 100 specially-equipped 1992 Oldsmobile Toma.dos with navigation, real-time traffic information, route guidance, and motorist information services. The system begins operation in Orlando, Florida, in January 1992. 
	Sarma, V.S. and S. Raju. "Multisensor Data Fusion and Decision Support for Air­borne Target Identification." IEEE Transactions on Systems, Man and Cybernetics. Sept.-Oct. 1991: (1224-30). 
	91. 
	Abstract: A knowledge-based approach and a reasoning system for multi­sensor data fusion is presented. The scenario for the study is an air-land battlefield situation. A data fusion system obtains data from a variety of sensors. A Dempster-Shafer approach for representing and combining data is found appropriate for combining uncertain information from disparate sensor sources at different levels of abstraction. Evidential reasoning al­lows confidence levels to be assigned to sets of propositions rather than
	Schlachta, H.B. and Studenny, J. "Interoperability Versus Integration of Omega and GPS." Journal of Navigation, May 1990 (229-237). 
	Abstract: The integration of Omega and GPS sensors into a single nav­igational system offers the advantages of good accuracy under almost all signal conditions, low capital investment, and certifiable worldwide nav­igation. The accuracy of the existing Omega network can be improved progressively as GPS satellite coverage is fully implemented. Eventu­ally, the same equipment can provide full GPS navigation accuracy with Omega as a back-up. This paper proposes a method of further improving the overall accurac
	Sikka, D.I., Varshney, P.K., and V.C. Vannicola. "A Distributed Artificial Intelligence Approach to Object Identification and Classification." Proceedings of the SPIE -The International Society for Optical Engineering. 28-29 March 1989: Orlando, FL (73~ 84). 
	Abstract: The authors present an application of distributed artificial in­telligence (DAI) tools to a data fusion and classification problem. Their approach is to use a blackboard for information management and hypothe­ses formulation. The blackboard is used by the knowledge sources (KSs) for sharing information and posting hypotheses, just as human experts sitting around a table would do. The simulation performs classification of an aircraft (AC) -after identifying it by its features -into disjoint sets ( 
	Stamenkovich, M. "An Application of Artificial Neural Networks for Autonomous Ship Navigation Through a Channel." VNIS '91. Vehicle Navigation and Information Systems Conference Proceedings. 20-23 Oct. 1991: Dearborn, MI. Vol. 1: (475-81). 
	92 
	Abstract: A neural network model based on reinforcement learning is in­vestigated for use as a shipboard autonomous channel navigator. The mode used consists of two, neuron-like elements. The basic learning scheme involves learning with a crit.ic. The network consists of an adaptive critic clement (ACE) and an adaptive search element (ASE). The ASE ex­plores t,l1c channel region while the ACE critici;1,es t.lic actions of tl1c ASE and tries to predict failures of the ASE's attempt to navigate. The neural ne
	Sumner, R. "Data Fusion in Pathfinder and TravTek." VNIS '91. Vehicle Navigation 
	and Information Systems Conference Proceedings. 20-23 Oct. 1991: Dearborn, MI. 
	Soc. Automotive Eng.: Warrendale, PA, 1991. Vol. 1: (71-5). 
	Abstract: A description is presented of the data fusion process and the manner in which it is applied in the Pathfinder and TravTek projects. In the TravTek system, travel times are transmitted to all vehicles. In the Pathfinder system, congestion levels are transmitted to all vehicles. These transmissions are broadcast once per minute. The data sources for these two Intelligent Transportation Systems (ITS) are described. 
	Zadeh, L.A. "Fuzzy Sets." Inform. Control. 1965: (338-53). 
	Abstract: The authors describe an algorithm for implementing a multi­sensor system in a model-based environment with consideration of the constraints. Based on an environment model, geometric features and con­straints are generated from a CAD model database. Sensor models are used to predict sensor response to certain features and to interpret raw sensor data. A constrained MMS (minimum mean squared) estimator is used to recursively predict, match, and update feature location. The effects of applying variou
	Zhu, Q., Huang, Y., and M. Payne. "An Expanded Dempster-Shafer Reasoning Tech­nique for Image Feature Integration and Object Recognition." Neural and Stochastic Methods in Image and Signal Processing. Proceedings of the SPIE -The International Society for Optical Engineering. 20-23 July 1992: San Diego, CA. SPIE, 1992 (36-47). 
	Abstract: Fusion of information from multiple sources has been one of the key steps to the success of general vision systems. It is also a problem for the development of color image understanding algorithms that make full use of the multichannel color data for object. recognition. The authors present a feature integration system charactcri:r.e<l by a hybrid combina­tion of a statistic-based reasoning technique and a symbolic logic-based inference method. A competitive evidence enhancement scheme is used in 
	93 
	Zhu, Q. and E.S. Lee. "Dempster-Sha.fer Approach in Propositional Logic." International Journal of Intelligent Systems. March 1993 (341-9). · 
	-

	A general framework .of uncertainty reasoning based on Dempster­Shafer's theory is proposed in the context of logic calculus. Under this framework, any inference can be ,conducted without much computational complexity. Furthermore, it avoids the problems of considering conflict­ing information and a common universe when two pieces of evidence a.re combined. 
	A bstra.ct: 

	94 







Accessibility Report





		Filename: 

		its_data_fusion_20190311.pdf









		Report created by: 

		NTL Digital Submissions, Librarian, ntldigitalsubmissions@dot.gov



		Organization: 

		National Transportation Library, Cataloging/Metadata







 [Personal and organization information from the Preferences > Identity dialog.]



Summary



The checker found problems which may prevent the document from being fully accessible.





		Needs manual check: 0



		Passed manually: 2



		Failed manually: 0



		Skipped: 0



		Passed: 27



		Failed: 3







Detailed Report





		Document





		Rule Name		Status		Description



		Accessibility permission flag		Passed		Accessibility permission flag must be set



		Image-only PDF		Passed		Document is not image-only PDF



		Tagged PDF		Passed		Document is tagged PDF



		Logical Reading Order		Passed manually		Document structure provides a logical reading order



		Primary language		Passed		Text language is specified



		Title		Passed		Document title is showing in title bar



		Bookmarks		Passed		Bookmarks are present in large documents



		Color contrast		Passed manually		Document has appropriate color contrast



		Page Content





		Rule Name		Status		Description



		Tagged content		Failed		All page content is tagged



		Tagged annotations		Passed		All annotations are tagged



		Tab order		Passed		Tab order is consistent with structure order



		Character encoding		Failed		Reliable character encoding is provided



		Tagged multimedia		Passed		All multimedia objects are tagged



		Screen flicker		Passed		Page will not cause screen flicker



		Scripts		Passed		No inaccessible scripts



		Timed responses		Passed		Page does not require timed responses



		Navigation links		Passed		Navigation links are not repetitive



		Forms





		Rule Name		Status		Description



		Tagged form fields		Passed		All form fields are tagged



		Field descriptions		Passed		All form fields have description



		Alternate Text





		Rule Name		Status		Description



		Figures alternate text		Passed		Figures require alternate text



		Nested alternate text		Passed		Alternate text that will never be read



		Associated with content		Passed		Alternate text must be associated with some content



		Hides annotation		Passed		Alternate text should not hide annotation



		Other elements alternate text		Failed		Other elements that require alternate text



		Tables





		Rule Name		Status		Description



		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot



		TH and TD		Passed		TH and TD must be children of TR



		Headers		Passed		Tables should have headers



		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column



		Summary		Passed		Tables must have a summary



		Lists





		Rule Name		Status		Description



		List items		Passed		LI must be a child of L



		Lbl and LBody		Passed		Lbl and LBody must be children of LI



		Headings





		Rule Name		Status		Description



		Appropriate nesting		Passed		Appropriate nesting










Back to Top



